Do you want to publish a course? Click here

UV line driven disc wind as the origin of ultrafast outflows in AGN

129   0   0.0 ( 0 )
 Added by Misaki Mizumoto
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

UltraFast Outflows (UFO) are observed in some active galactic nuclei (AGN), with blueshifted and highly ionised Fe-K absorption features. AGN typically have a UV bright accretion flow, so UV line driving is an obvious candidate for launching these winds. However this mechanism requires material with UV opacity, in apparent conflict with the observed high ionisation state of the wind. In this paper we synthesise the X-ray energy spectra resulting from different lines of sight through a state of the art radiation hydrodynamics UV line driven disc wind simulation. We demonstrate that there are some lines of sight which only intercept highly ionised and fast outflowing material. The cooler material required for the UV line driving acceleration is out of the line of sight, close to the disc, shielded from the X-rays by a failed wind. We fit these simulated wind spectra to data from the archetypal UFO source PG 1211+143 and show that they broadly reproduce the depth and velocity of the iron absorption lines seen. This directly demonstrates that UV line driving is a viable mechanism to launch even the fastest UFOs. We simulate microcalorimeter observations of this wind and show that their high energy resolution can resolve the detailed structure in the wind and recover the wind energetics when combined with models which correctly estimate the line formation radius of the wind. New data from microcalorimeters will pave the way for physical predictions of AGN wind feedback in cosmological simulations.



rate research

Read More

Warm absorbers are present in many Active Galactic Nuclei (AGN), seen as mildly ionised gas outflowing with velocities of a few hundred to a few thousand kilometres per second. These slow velocities imply a large launch radius, pointing to the broad line region and/or torus as the origin of this material. Thermal driving was originally suggested as a plausible mechanism for launching this material but recent work has focused instead on magnetic winds, unifying these slow, mildly ionised winds with the more highly ionised ultra-fast outflows. Here we use the recently developed quantitative models for thermal winds in black hole binary systems to predict the column density, velocity and ionisation state from AGN. Thermal winds are sensitive to the spectral energy distribution (SED), so we use realistic models for SEDs which change as a function of mass and mass accretion rate, becoming X-ray weaker (and hence more disc dominated) at higher Eddington ratio. These models allow us to predict the launch radius, velocity, column density and ionisation state of thermal winds as well as the mass loss rate and energetics. While these match well to some of the observed properties of warm absorbers, the data point to the presence of additional wind material, most likely from dust driving.
Ultra-fast outflows (UFOs) are seen in many AGN, giving a possible mode for AGN feedback onto the host galaxy. However, the mechanism(s) for the launch and acceleration of these outflows are currently unknown, with UV line driving apparently strongly disfavoured as the material along the line of sight is so highly ionised that it has no UV transitions. We revisit this issue using the Suzaku X-ray data from PDS 456, an AGN with the most powerful UFO seen in the local Universe. We explore conditions in the wind by developing a new 3-D Monte-Carlo code for radiation transport. The code only handles highly ionised ions, but the data show the ionisation state of the wind is high enough that this is appropriate, and this restriction makes it fast enough to explore parameter space. We reproduce the results of earlier work, confirming that the mass loss rate in the wind is around 30% of the inferred inflow rate through the outer disc. We show for the first time that UV line driving is likely to be a major contribution to the wind acceleration. The mass loss rate in the wind matches that predicted from a purely line driven system, and this UV absorption can take place out of the line of sight. Continuum driving should also play a role as the source is close to Eddington. This predicts that the most extreme outflows will be produced from the highest mass accretion rate flows onto high mass black holes, as observed.
Jets, from the protostellar to the AGN context, have been extensively studied but their connection to the turbulent dynamics of the underlying accretion disc is poorly understood. Following a similar approach to Lesur et al. (2013), we examine the role of the magnetorotational instability (MRI) in the production and acceleration of outflows from discs. Via a suite of one-dimensional shearing-box simulations of stratified discs we show that magneto-centrifugal winds exhibit cyclic activity with a period of 10-20 Omega^{-1}, a few times the orbital period. The cycle seems to be more vigorous for strong vertical field; it is robust to the variation of relevant parameters and independent of numerical details. The convergence of these solutions (in particular the mass loss rate) with vertical box size is also studied. By considering a sequence of magnetohydrostatic equilibria and their stability, the periodic activity may be understood as the succession of the following phases: (a) a dominant MRI channel mode, (b) strong magnetic field generation, (c) consequent wind launching, and ultimately (d) vertical expulsion of the excess magnetic field by the expanding and accelerating gas associated with the wind. We discuss potential connections between this behaviour and observed time-variability in disk-jet systems.
We study mass outflows driven from accretion discs by radiation pressure due to spectral lines. To investigate non-axisymmetric effects, we use the Athena++ code and develop a new module to account for radiation pressure driving. In 2D, our new simulations are consistent with previous 2D axisymmetric solutions by Proga et al. who used the Zeus 2D code. Specifically, we find that the disc winds are time dependent, characterized by a dense stream confined to $sim 45^{circ}$ relative to the disc midplane and bounded on the polar side by a less dense, fast stream. Introducing a vertical, $phi$-dependent, subsonic velocity perturbation in the disc midplane does not change the overall character of the solution but global outflow properties such as the mass, momentum and kinetic energy fluxes are altered by up to 100%. Non-axisymmetric density structures develop and persist mainly at the base of the wind. They are relatively small, and their densities can be a few times higher that the azimuthal average. The structure of the non-axisymmetric and axisymmetric solutions differ also in other ways. Perhaps most importantly from the observational point of view are the differences in the so called clumping factors, that serve as a proxy for emissivity due to two body processes. In particular, the spatially averaged clumping factor over the entire fast stream, while it is of a comparable value in both solutions, it varies about 10 times faster in the non-axisymmetric case.
We present a newly discovered correlation between the wind outflow velocity and the X-ray luminosity in the luminous ($L_{rm bol}sim10^{47},rm erg,s^{-1}$) nearby ($z=0.184$) quasar PDS,456. All the contemporary XMM-Newton, NuSTAR and Suzaku observations from 2001--2014 were revisited and we find that the centroid energy of the blueshifted Fe,K absorption profile increases with luminosity. This translates into a correlation between the wind outflow velocity and the hard X-ray luminosity (between 7--30,keV) where we find that $v_{rm w}/c propto L_{7-30}^{gamma}$ where $gamma=0.22pm0.04$. We also show that this is consistent with a wind that is predominately radiatively driven, possibly resulting from the high Eddington ratio of PDS,456.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا