Pre-Common-Envelope Mass Loss from Coalescing Binary Systems


Abstract in English

Binary systems undergoing unstable Roche Lobe overflow spill gas into their circumbinary environment as their orbits decay toward coalescence. In this paper, we use a suite of hydrodynamic models of coalescing binaries involving an extended donor and a more compact accretor. We focus on the period of unstable Roche Lobe overflow that ends as the accretor plunges within the envelope of the donor at the onset of a common envelope phase. During this stage, mass is removed from the donor and flung into the circumbinary environment. Across a wide range of binary mass ratios, we find that the mass expelled as the separation decreases from the Roche limit to the donors original radius is of the order of 25% of the accretors mass. We study the kinematics of this ejecta and its dependencies on binary properties and find that it assembles into a toroidal circumbinary distribution. These circumbinary tori have approximately constant specific angular momentum due to momentum transport by spiral shocks launched from the orbiting binary. We show that an analytic model with these torus properties captures many of the main features of the azimuthally-averaged profiles of our hydrodynamic simulations. Our results, in particular the simple relationship between accretor mass and expelled mass and its spatial distribution, may be useful in interpreting stellar coalescence transients like luminous red novae, and in initializing hydrodynamic simulations of the subsequent common envelope phase.

Download