No Arabic abstract
We use a new interdisciplinary approach to study the UV surface habitability of Proxima $b$ under quiescent and flaring stellar conditions. We assumed planetary atmospheric compositions based on CO$_2$ and N$_2$ and surface pressures from 100 to 5000 mbar. Our results show that the combination of these atmospheric compositions and pressures provide enough shielding from the most damaging UV wavelengths, expanding the UV-protective planetary atmospheric compositions beyond ozone. Additionally, we show that the UV radiation reaching the surface of Proxima $b$ during quiescent conditions would be negligible from the biological point of view, even without an atmosphere. Given that high UV fluxes could challenge the existence of life, then, we experimentally tested the effect that flares would have on microorganisms in a worst-case scenario (no UV-shielding). Our results show the impact that a typical flare and a superflare would have on life: when microorganisms receive very high fluences of UVC, such as those expected to reach the surface of Proxima $b$ after a typical flare or a superflare, a fraction of the population is able to survive. Our study suggests that life could cope with highly UV irradiated environments in exoplanets under conditions that cannot be found on Earth.
We analyze the evolution of the potentially habitable planet Proxima Centauri b to identify environmental factors that affect its long-term habitability. We consider physical processes acting on size scales ranging from the galactic to the stellar system to the planets core. We find that there is a significant probability that Proxima Centauri has had encounters with its companion stars, Alpha Centauri A and B, that are close enough to destabilize an extended planetary system. If the system has an additional planet, as suggested by the discovery data, then it may perturb planet bs eccentricity and inclination, possibly driving those parameters to non-zero values, even in the presence of strong tidal damping. We also model the internal evolution of the planet, evaluating the roles of different radiogenic abundances and tidal heating and find that magnetic field generation is likely for billions of years. We find that if planet b formed in situ, then it experienced 169 +/- 13 million years in a runaway greenhouse as the star contracted during its formation. This early phase could remove up to 5 times as much water as in the modern Earths oceans, possibly producing a large abiotic oxygen atmosphere. On the other hand, if Proxima Centauri b formed with a substantial hydrogen atmosphere (0.01 - 1% of the planets mass), then this envelope could have shielded the water long enough for it to be retained before being blown off itself. After modeling this wide range of processes we conclude that water retention during the host stars pre-main sequence phase is the biggest obstacle for Proxima bs habitability. These results are all obtained with a new software package called VPLANET.
Proxima Centauri b provides an unprecedented opportunity to understand the evolution and nature of terrestrial planets orbiting M dwarfs. Although Proxima Cen b orbits within its stars habitable zone, multiple plausible evolutionary paths could have generated different environments that may or may not be habitable. Here we use 1D coupled climate-photochemical models to generate self-consistent atmospheres for evolutionary scenarios predicted in our companion paper (Barnes et al., 2016). These include high-O2, high-CO2, and more Earth-like atmospheres, with either oxidizing or reducing compositions. We show that these modeled environments can be habitable or uninhabitable at Proxima Cen bs position in the habitable zone. We use radiative transfer models to generate synthetic spectra and thermal phase curves for these simulated environments, and instrument models to explore our ability to discriminate between possible planetary states. These results are applicable not only to Proxima Cen b, but to other terrestrial planets orbiting M dwarfs. Thermal phase curves may provide the first constraint on the existence of an atmosphere, and JWST observations longward of 7 microns could characterize atmospheric heat transport and molecular composition. Detection of ocean glint is unlikely with JWST, but may be within the reach of larger aperture telescopes. Direct imaging spectra may detect O4, which is diagnostic of massive water loss and O2 retention, rather than a photosynthesis. Similarly, strong CO2 and CO bands at wavelengths shortward of 2.5 {mu}m would indicate a CO2-dominated atmosphere. If the planet is habitable and volatile-rich, direct imaging will be the best means of detecting habitability. Earth-like planets with microbial biospheres may be identified by the presence of CH4 and either photosynthetically produced O2 or a hydrocarbon haze layer.
A new planet has been recently discovered around Proxima Centauri. With an orbital separation of $sim$$1.44$ au and a minimum mass of about $7$ $M_{oplus}$, Proxima c is a prime direct imaging target for atmospheric characterization. The latter can only be performed with a good understanding of the space environment of the planet, as multiple processes can have profound effects on the atmospheric structure and evolution. Here, we take one step in this direction by generating physically-realistic numerical simulations of Proximas stellar wind, coupled to a magnetosphere and ionosphere model around Proxima c. We evaluate their expected variation due to the magnetic cycle of the host star, as well as for plausible inclination angles for the exoplanet orbit. Our results indicate stellar wind dynamic pressures comparable to present-day Earth, with a slight increase (by a factor of 2) during high activity periods of the star. A relatively weak interplanetary magnetic field at the distance of Proxima c leads to negligible stellar wind Joule heating of the upper atmosphere (about $10%$ of the solar wind contribution on Earth) for an Earth-like planetary magnetic field ($0.3$ G). Finally, we provide an assessment of the likely extreme conditions experienced by the exoplanet candidate Proxima d, tentatively located at $0.029$ au with a minimum mass of $0.29$ $M_{oplus}$.
We report magnetic field measurements for Kappa1~Cet, a proxy of the young Sun when life arose on Earth. We carry out an analysis of the magnetic properties determined from spectropolarimetric observations and reconstruct its large-scale surface magnetic field to derive the magnetic environment, stellar winds and particle flux permeating the interplanetary medium around Kappa1~Cet. Our results show a closer magnetosphere and mass-loss rate of Mdot = 9.7 x 10^{-13} Msol/yr, i.e., a factor 50 times larger than the current solar wind mass-loss rate, resulting in a larger interaction via space weather disturbances between the stellar wind and a hypothetical young-Earth analogue, potentially affecting the planets habitability. Interaction of the wind from the young Sun with the planetary ancient magnetic field may have affected the young Earth and its life conditions
In addition to long-lived radioactive nuclei like U and Th isotopes, which have been used to measure the age of the Galaxy, also radioactive nuclei with half-lives between 0.1 and 100 million years (short-lived radionuclides, SLRs) were present in the early Solar System (ESS), as indicated by high-precision meteoritic analysis. We review the most recent meteoritic data and describe the nuclear reaction processes responsible for the creation of SLRs in different types of stars and supernovae. We show how the evolution of radionuclide abundances in the Milky Way Galaxy can be calculated based on their stellar production. By comparing predictions for the evolution of galactic abundances to the meteoritic data we can build up a time line for the nucleosynthetic events that predated the birth of the Sun, and investigate the lifetime of the stellar nursery where the Sun was born. We then review the scenarios for the circumstances and the environment of the birth of the Sun within such a stellar nursery that have been invoked to explain the abundances in the ESS of the SLRs with the shortest lives - of the order of million years or less. Finally, we describe how the heat generated by radioactive decay and in particular by the abundant 26Al in the ESS had important consequences for the thermo-mechanical and chemical evolution of planetesimals, and discuss possible implications on the habitability of terrestrial-like planets. We conclude with a set of open questions and future directions related to our understanding of the nucleosynthetic processes responsible for the production of SLRs in stars, their evolution in the Galaxy, the birth of the Sun, and the connection with the habitability of extra-solar planets.