Do you want to publish a course? Click here

Core-collapse Supernova Explosions Driven by the Hadron-quark Phase Transition as a Rare $r$-process Site

124   0   0.0 ( 0 )
 Added by Tobias Fischer
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Supernova explosions of massive stars are one of the primary sites for the production of the elements in the universe. Up to now, stars with zero-age main-sequence masses in the range of 35--50~$M_odot$ had mostly been representing the failed supernova explosion branch. In contrast, it has been demonstrated recently that the appearance of exotic phases of hot and dense matter, associated with a sufficiently strong phase transition from nuclear matter to the quark-gluon plasma at high baryon density, can trigger supernova explosions of such massive supergiant. Here, we present the first results obtained from an extensive nucleosynthesis analysis for material being ejected from the surface of the newly born proto-neutron star of such supernova explosions. These ejecta contain an early neutron-rich component and a late-time high-entropy neutrino-driven wind. The nucleosynthesis robustly overcomes the production of nuclei associated with the second $r$-process peak, at nuclear mass number $Asimeq 130$, and proceeds beyond the formation of the third peak ($Asimeq 195$) to the actinides. These yields may account for metal-poor star observations concerning $r$-process elements such as strontium and europium in the Galaxy at low metalicity, while the actinide yields suggests that this source may be a candidate contributing to the abundances of radioactive $^{244}$Pu measured in deep-sea sediments on Earth.



rate research

Read More

We explore explosions of massive stars, which are triggered via the quark-hadron phase transition during the early post bounce phase of core-collapse supernovae. We construct a quark equation of state, based on the bag model for strange quark matter. The transition between the hadronic and the quark phases is constructed applying Gibbs conditions. The resulting quark-hadron hybrid equations of state are used in core-collapse supernova simulations, based on general relativistic radiation hydrodynamics and three flavor Boltzmann neutrino transport in spherical symmetry. The formation of a mixed phase reduces the adiabatic index, which induces the gravitational collapse of the central protoneutron star. The collapse halts in the pure quark phase, where the adiabatic index increases. A strong accretion shock forms, which propagates towards the protoneutron star surface. Due to the density decrease of several orders of magnitude, the accretion shock turns into a dynamic shock with matter outflow. This moment defines the onset of the explosion in supernova models that allow for a quark-hadron phase transition, where otherwise no explosions could be obtained. The shock propagation across the neutrinospheres releases a burst of neutrinos. This serves as a strong observable identification for the structural reconfiguration of the stellar core. The ejected matter expands on a short timescale and remains neutron-rich. These conditions might be suitable for the production of heavy elements via the r-process. The neutron-rich material is followed by proton-rich neutrino-driven ejecta in the later cooling phase of the protoneutron star where the vp-process might occur.
Hadronic matter undergoes a deconfinement transition to quark matter at high temperature and/or high density. It would be realized in collapsing cores of massive stars. In the framework of MIT bag model, the ambiguities of the interaction are encapsulated in the bag constant. Some progenitor stars that invoke the core collapses explode as supernovae, and other ones become black holes. The fates of core collapses are investigated for various cases. Equations of state including the hadron-quark phase transition are constructed for the cases of the bag constant B=90, 150 and 250 MeV fm^{-3}. To describe the mixed phase, the Gibbs condition is used. Adopting the equations of state with different bag constants, the core collapse simulations are performed for the progenitor models with 15 and 40Msolar. If the bag constant is small as B=90 MeV fm^{-3}, an interval between the bounce and black hole formation is shortened drastically for the model with 40Msolar and the second bounce revives the shock wave leading to explosion for the model with 15Msolar.
We have conducted nineteen state-of-the-art 3D core-collapse supernova simulations spanning a broad range of progenitor masses. This is the largest collection of sophisticated 3D supernova simulations ever performed. We have found that while the majority of these models explode, not all do, and that even models in the middle of the available progenitor mass range may be less explodable. This does not mean that those models for which we did not witness explosion would not explode in Nature, but that they are less prone to explosion than others. One consequence is that the compactness measure is not a metric for explodability. We find that lower-mass massive star progenitors likely experience lower-energy explosions, while the higher-mass massive stars likely experience higher-energy explosions. Moreover, most 3D explosions have a dominant dipole morphology, have a pinched, wasp-waist structure, and experience simultaneous accretion and explosion. We reproduce the general range of residual neutron-star masses inferred for the galactic neutron-star population. The most massive progenitor models, however, in particular vis `a vis explosion energy, need to be continued for longer physical times to asymptote to their final states. We find that while the majority of the inner ejecta have Y$_e = 0.5$, there is a substantial proton-rich tail. This result has important implications for the nucleosynthetic yields as a function of progenitor. Finally, we find that the non-exploding models eventually evolve into compact inner configurations that experience a quasi-periodic spiral SASI mode. We otherwise see little evidence of the SASI in the exploding models.
An important result in core-collapse supernova (CCSN) theory is that spherically-symmetric, one-dimensional simulations routinely fail to explode, yet multi-dimensional simulations often explode. Numerical investigations suggest that turbulence eases the condition for explosion, but how is not fully understood. We develop a turbulence model for neutrino-driven convection, and show that this turbulence model reduces the condition for explosions by about 30%, in concordance with multi-dimensional simulations. In addition, we identify which turbulent terms enable explosions. Contrary to prior suggestions, turbulent ram pressure is not the dominant factor in reducing the condition for explosion. Instead, there are many contributing factors, ram pressure being only one of them, but the dominant factor is turbulent dissipation (TD). Primarily, TD provides extra heating, adding significant thermal pressure, and reducing the condition for explosion. The source of this TD power is turbulent kinetic energy, which ultimately derives its energy from the higher potential of an unstable convective profile. Investigating a turbulence model in conjunction with an explosion condition enables insight that is difficult to glean from merely analyzing complex multi-dimensional simulations. An explosion condition presents a clear diagnostic to explain why stars explode, and the turbulence model allows us to explore how turbulence enables explosion. Though we find that turbulent dissipation is a significant contributor to successful supernova explosions, it is important to note that this work is to some extent qualitative. Therefore, we suggest ways to further verify and validate our predictions with multi-dimensional simulations.
We investigated r-process nucleosynthesis in magneto-rotational supernovae, based on a new explosion mechanism induced by the magneto-rotational instability. A series of axisymmetric magneto-hydrodynamical simulations with detailed microphysics including neutrino heating is performed, numerically resolving the magneto-rotational instability. Neutrino-heating dominated explosions, enhanced by magnetic fields, showed mildly neutron-rich ejecta producing nuclei up to $A sim 130$ (i.e. the weak r-process), while explosion models with stronger magnetic fields reproduce a solar-like r-process pattern. More commonly seen abundance patterns in our models are in between the weak and regular r-process, producing lighter and intermediate mass nuclei. These {it intermediate r-processes} exhibit a variety of abundance distributions, compatible with several abundance patterns in r-process-enhanced metal-poor stars. The amount of Eu ejecta $sim 10^{-5} M_odot$ in magnetically-driven jets agrees with predicted values in the chemical evolution of early galaxies. In contrast, neutrino-heating dominated explosions have a significant amount of Fe ($^{56}{rm Ni}$) and Zn, comparable to regular supernovae and hypernovae, respectively. These results indicate magneto-rotational supernovae can produce a wide range of heavy nuclei from iron-group to r-process elements, depending on the explosion dynamics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا