Single photon emitters (SPEs) in hexagonal boron nitride (hBN) have garnered significant attention over the last few years due to their superior optical properties. However, despite the vast range of experimental results and theoretical calculations, the defect structure responsible for the observed emission has remained elusive. Here, by controlling the incorporation of impurities into hBN and by comparing various synthesis methods, we provide direct evidence that the visible SPEs are carbon related. Room temperature optically detected magnetic resonance (ODMR) is demonstrated on ensembles of these defects. We also perform ion implantation experiments and confirm that only carbon implantation creates SPEs in the visible spectral range. Computational analysis of hundreds of potential carbon-based defect transitions suggest that the emission results from the negatively charged VBCN- defect, which experiences long-range out-of-plane deformations and is environmentally sensitive. Our results resolve a long-standing debate about the origin of single emitters at the visible range in hBN and will be key to deterministic engineering of these defects for quantum photonic devices.