Do you want to publish a course? Click here

Collective All-Carbon Magnetism in Triangulene Dimers

114   0   0.0 ( 0 )
 Added by Shantanu Mishra
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Triangular zigzag nanographenes, such as triangulene and its pi-extended homologues, have received widespread attention as organic nanomagnets for molecular spintronics, and may serve as building blocks for high-spin networks with long-range magnetic order - of immense fundamental and technological relevance. As a first step toward these lines, we present the on-surface synthesis and a proof-of-principle experimental study of magnetism in covalently bonded triangulene dimers. On-surface reactions of rationally-designed precursor molecules on Au(111) lead to the selective formation of triangulene dimers in which the triangulene units are either directly connected through their minority sublattice atoms, or are separated via a 1,4-phenylene spacer. The chemical structures of the dimers have been characterized by bond-resolved scanning tunneling microscopy. Scanning tunneling spectroscopy and inelastic electron tunneling spectroscopy measurements reveal collective singlet-triplet spin excitations in the dimers, demonstrating efficient inter-triangulene magnetic coupling.



rate research

Read More

Triangulene nanographenes are open-shell molecules with predicted high spin state due to the frustration of their conjugated network. Their long-sought synthesis became recently possible over a metal surface. Here, we present a macrocycle formed by six [3]triangulenes, which was obtained by combining the solution synthesis of a dimethylphenyl-anthracene cyclic hexamer and the on-surface cyclodehydrogenation of this precursor over a gold substrate. The resulting triangulene nanostar exhibits a collective spin state generated by the interaction of its 12 unpaired {pi}-electrons along the conjugated lattice, corresponding to the antiferromagnetic ordering of six S = 1 sites (one per triangulene unit). Inelastic electron tunneling spectroscopy resolved three spin excitations connecting the singlet ground state with triplet states. The nanostar behaves close to predictions from the Heisenberg model of a S = 1 spin ring, representing a unique system to test collective spin modes in cyclic systems.
We have performed parameter-free calculations of electron transport across a carbon molecular junction consisting of a C$_{60}$ molecule sandwiched between two semi-infinite metallic carbon nanotubes. It is shown that the Landauer conductance of this carbon hybrid system can be tuned within orders of magnitude not only by varying the tube-C$_{60}$ distance, but more importantly at fixed distances by i) changing the orientation of the Buckminsterfullerene or ii) rotating one of the tubes around its cylinder axis. Furthermore, it is explicitely shown that structural relaxation determines qualitatively the transmission spectrum of such devices.
We investigate the electronic structure of carbon nanotubes functionalized by adsorbates anchored with single C-C covalent bonds. We find that, despite the particular adsorbate, a spin moment with a universal value of 1.0 $mu_B$ per molecule is induced at low coverage. Therefore, we propose a mechanism of bonding-induced magnetism at the carbon surface. The adsorption of a single molecule creates a dispersionless defect state at the Fermi energy, which is mainly localized in the carbon wall and presents a small contribution from the adsorbate. This universal spin moment is fairly independent of the coverage as long as all the molecules occupy the same graphenic sublattice. The magnetic coupling between adsorbates is also studied and reveals a key dependence on the graphenic sublattice adsorption site.
Motivated by the observation of ferromagnetism in carbon foams, a massive search for (meta)stable disorder structures of elemental carbon is performed by a generate and test approach. We use the Density Functional based program SIESTA to optimize the structures and calculate the electronic spectra and spin densities. About 1% of the 24000 optimized structures presents magnetic moments, a necessary but not sufficient condition for intrinsic magnetic order. We analyze the results using elements of graph theory. Although the relation between structure and the occurrence of magnetic moments is not yet fully clarified, we give some minimal requirements for this possibility, such as the existence of three-fold coordinated atoms surrounded by four-fold coordinated atoms. We discuss in detail the most promising structures.
To induce intrinsic magnetism in the nominally nonmagnetic carbon materials containing only $s$ and $p$ electrons is an intriguing yet challenging task. Here, based on first-principles electronic structure calculations, we propose a universal approach inspired by Ovchinnikovs rule to guide us the design of a series of imaginative magnetic all-carbon structures. The idea is to combine the differently stacked graphene layers via the acetylenic linkages (-C$equiv$C-) to obtain a class of two-dimensional (2D) and three-dimensional (3D) carbon networks. With first-principles electronic structure calculations, we confirm the effectiveness of this approach via concrete examples of double-layer ALBG-C14, triple-layer ALTG-C22, and bulk IALG-C30. We show that these materials are antiferromagnetic (AFM) semiconductors with intralayer Neel and interlayer AFM couplings. According to the above idea, our work not only provides a promising design scheme for magnetic all-carbon materials, but also can apply to other $pi$-bonding network systems.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا