Do you want to publish a course? Click here

A unified phase diagram of F-doped LaFeAsO by means of NMR and NQR parameters

127   0   0.0 ( 0 )
 Added by Hans-Joachim Grafe
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present $^{75}$As Nuclear Magnetic and Quadrupole Resonance results (NMR, NQR) on a new set of LaFeAsO$_{1-x}$F$_x$ polycrystalline samples. Improved synthesis conditions led to more homogenized samples with better control of the fluorine content. The structural$equiv$nematic, magnetic, and superconducting transition temperatures have been determined by NMR spin-lattice relaxation rate and AC susceptibility measurements. The so-determined phase diagram deviates from the published one especially for low F-doping concentrations. However, if the doping level is determined from the NQR spectra, both phase diagrams can be reconciled. The absence of bulk coexistence of magnetism and superconductivity and a nanoscale separation into low-doping-like and high-doping-like regions have been confirmed. Additional frequency dependent intensity, spin-spin, and spin-lattice relaxation rate measurements on underdoped samples at the boundary of magnetism and superconductivity indicate that orthorhombicity and magnetism originate from the low-doping-like regions, and superconductivity develops at first in the high-doping-like regions.

rate research

Read More

114 - K. Ahilan , F. L. Ning , T. Imai 2008
We report 19-F NMR investigation of the new high temperature superconductor LaFeAsO(0.89)F(0.11) (Tc ~ 28K). We demonstrate that low frequency spin fluctuations exhibit pseudo gap behavior above Tc. We also deduce the London penetration depth lambda from NMR line broadening below Tc.
122 - T. Imai , K. Ahilan , F.L. Ning 2008
We will probe the intrinsic behavior of spin susceptibility chi_(spin) in the LaFeAsO(1-x)F(x) superconductor (x ~ 0.1, Tc ~ 27K) using 19-F and 75-As NMR techniques. Our new results firmly establish the pseudo-gap behavior with Delta_(PG)/kB ~ 140K. The estimated magnitude of chi_(spin) at 290K, ~1.8x10^(-4) [emu/mol-Fe], is approximately twice larger than that in high Tc cuprates. We also show that chi_(spin) levels off below ~50K down to Tc.
We report 139La, 57Fe and 75As nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements on powders of the new LaO1-xFxFeAs superconductor for x = 0 and x = 0.1 at temperatures up to 480 K, and compare our measured NQR spectra with local density approximation (LDA) calculations. For all three nuclei in the x = 0.1 material, it is found that the local Knight shift increases monotonically with an increase in temperature, and scales with the macroscopic susceptibility, suggesting a single magnetic degree of freedom. Surprisingly, the spin lattice relaxation rates for all nuclei also scale with one another, despite the fact that the form factors for each site sample different regions of q-space. This result suggests a lack of any q-space structure in the dynamical spin susceptibility that might be expected in the presence of antiferromagnetic correlations. Rather, our results are more compatible with simple quasi-particle scattering. Furthermore, we find that the increase in the electric field gradient at the As cannot be accounted for by LDA calculations, suggesting that structural changes, in particular the position of the As in the unit cell, dominate the NQR response.
Here we report the synthesis and basic characterization of LaFe1-xCoxAsO for several values of x. The parent phase LaFeAsO orders antiferromagnetically (TN ~ 145 K). Replacing Fe with Co is expected to both electron dope the system and introduce disorder in the FeAs layer. For x = 0.05 antiferromagnetic order is destroyed and superconductivity is observed at Tconset = 11.2 K. For x = 0.11 superconductivity is observed at Tc(onset) = 14.3 K, and for x = 0.15 Tc = 6.0 K. Superconductivity is not observed for x = 0.2 and 0.5, but for x = 1, the material appears to be ferromagnetic (Tc ~ 56 K) as judged by magnetization measurements. We conclude that Co is an effective dopant to induce superconductivity. Somewhat surprisingly, the system appears to tolerate considerable disorder in the FeAs planes.
We present the results of $^{75}$As nuclear magnetic resonance (NMR), nuclear quadrupole resonance (NQR), and resistivity measurements in KFe$_2$As$_2$ under pressure ($p$). The temperature dependence of the NMR shift, nuclear spin-lattice relaxation time ($T_1$) and resistivity show a crossover between a high-temperature incoherent, local-moment behavior and a low-temperature coherent behavior at a crossover temperature ($T^*$). $T^*$ is found to increase monotonically with pressure, consistent with increasing hybridization between localized $3d$ orbital-derived bands with the itinerant electron bands. No anomaly in $T^*$ is seen at the critical pressure $p_{rm c}=1.8$ GPa where a change of slope of the superconducting (SC) transition temperature $T_{rm c}(p)$ has been observed. In contrast, $T_{rm c}(p)$ seems to correlate with antiferromagnetic spin fluctuations in the normal state as measured by the NQR $1/T_1$ data, although such a correlation cannot be seen in the replacement effects of A in the AFe$_2$As$_2$ (A= K, Rb, Cs) family. In the superconducting state, two $T_1$ components are observed at low temperatures, suggesting the existence of two distinct local electronic environments. The temperature dependence of the short $T_{rm 1s}$ indicates nearly gapless state below $T_{rm c}$. On the other hand, the temperature dependence of the long component 1/$T_{rm 1L}$ implies a large reduction in the density of states at the Fermi level due to the SC gap formation. These results suggest a real-space modulation of the local SC gap structure in KFe$_2$As$_2$ under pressure.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا