Forced Oscillatory Motion of Trapped Counter-Propagating Solitons


Abstract in English

Both the group velocity and phase velocity of two solitons can be synchronized by a Kerr-effect mediated interaction, causing what is known as soliton trapping. Trapping can occur when solitons travel through single-pass optical fibers or when circulating in optical resonators. Here, we demonstrate and theoretically explain a new manifestation of soliton trapping that occurs between counter-propagating solitons in microresonators. When counter-pumping a microresonator using slightly detuned pump frequencies and in the presence of backscattering, the group velocities of clockwise and counter-clockwise solitons undergo periodic modulation instead of being locked to a constant velocity. Upon emission from the microcavity, the solitons feature a relative oscillatory motion having an amplitude that can be larger than the soliton pulse width. This relative motion introduces a sideband fine structure into the optical spectrum of the counter-propagating solitons. Our results highlight the significance of coherent pumping in determining soliton dynamics within microresonators and add a new dimension to the physics of soliton trapping.

Download