Do you want to publish a course? Click here

On Minimax Exponents of Sparse Testing

109   0   0.0 ( 0 )
 Added by Subhabrata Sen
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We consider exact asymptotics of the minimax risk for global testing against sparse alternatives in the context of high dimensional linear regression. Our results characterize the leading order behavior of this minimax risk in several regimes, uncovering new phase transitions in its behavior. This complements a vast literature characterizing asymptotic consistency in this problem, and provides a useful benchmark, against which the performance of specific tests may be compared. Finally, we provide some preliminary evidence that popular sparsity adaptive procedures might be sub-optimal in terms of the minimax risk.



rate research

Read More

We consider the problem of conditional independence testing of $X$ and $Y$ given $Z$ where $X,Y$ and $Z$ are three real random variables and $Z$ is continuous. We focus on two main cases - when $X$ and $Y$ are both discrete, and when $X$ and $Y$ are both continuous. In view of recent results on conditional independence testing (Shah and Peters, 2018), one cannot hope to design non-trivial tests, which control the type I error for all absolutely continuous conditionally independent distributions, while still ensuring power against interesting alternatives. Consequently, we identify various, natural smoothness assumptions on the conditional distributions of $X,Y|Z=z$ as $z$ varies in the support of $Z$, and study the hardness of conditional independence testing under these smoothness assumptions. We derive matching lower and upper bounds on the critical radius of separation between the null and alternative hypotheses in the total variation metric. The tests we consider are easily implementable and rely on binning the support of the continuous variable $Z$. To complement these results, we provide a new proof of the hardness result of Shah and Peters.
We address the problem of adaptive minimax density estimation on $bR^d$ with $bL_p$--loss on the anisotropic Nikolskii classes. We fully characterize behavior of the minimax risk for different relationships between regularity parameters and norm indexes in definitions of the functional class and of the risk. In particular, we show that there are four different regimes with respect to the behavior of the minimax risk. We develop a single estimator which is (nearly) optimal in orderover the complete scale of the anisotropic Nikolskii classes. Our estimation procedure is based on a data-driven selection of an estimator from a fixed family of kernel estimators.
Permutation tests are widely used in statistics, providing a finite-sample guarantee on the type I error rate whenever the distribution of the samples under the null hypothesis is invariant to some rearrangement. Despite its increasing popularity and empirical success, theoretical properties of the permutation test, especially its power, have not been fully explored beyond simple cases. In this paper, we attempt to fill this gap by presenting a general non-asymptotic framework for analyzing the power of the permutation test. The utility of our proposed framework is illustrated in the context of two-sample and independence testing under both discrete and continuous settings. In each setting, we introduce permutation tests based on U-statistics and study their minimax performance. We also develop exponential concentration bounds for permuted U-statistics based on a novel coupling idea, which may be of independent interest. Building on these exponential bounds, we introduce permutation tests which are adaptive to unknown smoothness parameters without losing much power. The proposed framework is further illustrated using more sophisticated test statistics including weighted U-statistics for multinomial testing and Gaussian kernel-based statistics for density testing. Finally, we provide some simulation results that further justify the permutation approach.
162 - Daniel J. McDonald 2017
This paper presents minimax rates for density estimation when the data dimension $d$ is allowed to grow with the number of observations $n$ rather than remaining fixed as in previous analyses. We prove a non-asymptotic lower bound which gives the worst-case rate over standard classes of smooth densities, and we show that kernel density estimators achieve this rate. We also give oracle choices for the bandwidth and derive the fastest rate $d$ can grow with $n$ to maintain estimation consistency.
Testing for white noise is a classical yet important problem in statistics, especially for diagnostic checks in time series modeling and linear regression. For high-dimensional time series in the sense that the dimension $p$ is large in relation to the sample size $T$, the popular omnibus tests including the multivariate Hosking and Li-McLeod tests are extremely conservative, leading to substantial power loss. To develop more relevant tests for high-dimensional cases, we propose a portmanteau-type test statistic which is the sum of squared singular values of the first $q$ lagged sample autocovariance matrices. It, therefore, encapsulates all the serial correlations (upto the time lag $q$) within and across all component series. Using the tools from random matrix theory and assuming both $p$ and $T$ diverge to infinity, we derive the asymptotic normality of the test statistic under both the null and a specific VMA(1) alternative hypothesis. As the actual implementation of the test requires the knowledge of three characteristic constants of the population cross-sectional covariance matrix and the value of the fourth moment of the standardized innovations, non trivial estimations are proposed for these parameters and their integration leads to a practically usable test. Extensive simulation confirms the excellent finite-sample performance of the new test with accurate size and satisfactory power for a large range of finite $(p,T)$ combinations, therefore ensuring wide applicability in practice. In particular, the new tests are consistently superior to the traditional Hosking and Li-McLeod tests.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا