Origin of the Temperature Collapse of the Electric Conductivity in Bilayer Graphene


Abstract in English

Recent experiments have reported evidence of dominant electron-hole scattering in the electric conductivity of suspended bilayer graphene near charge neutrality. According to these experiments, plots of the electric conductivity as a function of $mu/k_BT$ (chemical potential scaled with temperature) obtained for different temperatures in the range of $12rm{K}lesssim T lesssim 40rm{K}$ collapse on a single curve independent of $T$. In a recent theory, this observation has been taken as an indication that the main sub-dominant scattering process is not electron-impurity but electron-phonon. Here we demonstrate that the collapse of the data on a single curve can be explained without invoking electron-phonon scattering, but assuming that the suspended bilayer graphene is not a truly gapless system. With a gap of $sim 5$ meV, our theory produces excellent agreement with the observed conductivity over the full reported range of temperatures. These results are based on the hydrodynamic theory of conductivity, which thus emerges as a solid foundation for the analysis of experiments and the estimation of the band-gap in multiband systems.

Download