Do you want to publish a course? Click here

Origin of the Temperature Collapse of the Electric Conductivity in Bilayer Graphene

79   0   0.0 ( 0 )
 Added by Mohammad Zarenia
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recent experiments have reported evidence of dominant electron-hole scattering in the electric conductivity of suspended bilayer graphene near charge neutrality. According to these experiments, plots of the electric conductivity as a function of $mu/k_BT$ (chemical potential scaled with temperature) obtained for different temperatures in the range of $12rm{K}lesssim T lesssim 40rm{K}$ collapse on a single curve independent of $T$. In a recent theory, this observation has been taken as an indication that the main sub-dominant scattering process is not electron-impurity but electron-phonon. Here we demonstrate that the collapse of the data on a single curve can be explained without invoking electron-phonon scattering, but assuming that the suspended bilayer graphene is not a truly gapless system. With a gap of $sim 5$ meV, our theory produces excellent agreement with the observed conductivity over the full reported range of temperatures. These results are based on the hydrodynamic theory of conductivity, which thus emerges as a solid foundation for the analysis of experiments and the estimation of the band-gap in multiband systems.



rate research

Read More

Assuming diffusive carrier transport and employing an effective medium theory, we calculate the temperature dependence of bilayer graphene conductivity due to Fermi-surface broadening as a function of carrier density. We find that the temperature dependence of the conductivity depends strongly on the amount of disorder. In the regime relevant to most experiments, the conductivity is a function of T/T*, where T* is the characteristic temperature set by disorder. We demonstrate that experimental data taken from various groups collapse onto a theoretically predicted scaling function.
Using terahertz time-domain spectroscopy, the real part of optical conductivity [$sigma_{1}(omega)$] of twisted bilayer graphene was obtained at different temperatures (10 -- 300 K) in the frequency range 0.3 -- 3 THz. On top of a Drude-like response, we see a strong peak in $sigma_{1} (omega)$ at $sim$2.7 THz. We analyze the overall Drude-like response using a disorder-dependent (unitary scattering) model, then attribute the peak at 2.7 THz to an enhanced density of states at that energy, that is caused by the presence of a van Hove singularity arising from a commensurate twisting of the two graphene layers.
166 - J. J. Palacios 2010
It is a fact that the minimal conductivity $sigma_0$ of most graphene samples is larger than the well-established universal value for ideal graphene $4e^2/pi h$; in particular, larger by a factor $gtrsimpi$. Despite intense theoretical activity, this fundamental issue has eluded an explanation so far. Here we present fully atomistic quantum mechanical estimates of the graphene minimal conductivity where electron-electron interactions are considered in the framework of density functional theory. We show the first conclusive evidence of the dominant role on the minimal conductivity of charged impurities over ripples, which have no visible effect. Furthermore, in combination with the logarithmic scaling law for diffusive metallic graphene, we ellucidate the origin of the ubiquitously observed minimal conductivity in the range $8e^2/h > sigma_0 gtrsim 4e^2/h$.
Model description of patterns of atomic displacements in twisted bilayer systems has been proposed. The model is based on the consideration of several dislocation ensembles, employing a language that is widely used for grain boundaries and film/substrate systems. We show that three ensembles of parallel screw dislocations are sufficient both to describe the rotation of the layers as a whole, and for the vortex-like displacements resulting from elastic relaxation. The results give a clear explanation of the observed features of the structural state such as vortices, accompanied by alternating stacking.
A Drude-Boltzmann theory is used to calculate the transport properties of bilayer graphene. We find that for typical carrier densities accessible in graphene experiments, the dominant scattering mechanism is overscreened Coulomb impurities that behave like short-range scatterers. We anticipate that the conductivity $sigma(n)$ is linear in $n$ at high density and has a plateau at low density corresponding to a residual density of $n^* = sqrt{n_{rm imp} {tilde n}}$, where ${tilde n}$ is a constant which we estimate using a self-consistent Thomas-Fermi screening approximation to be ${tilde n} approx 0.01 ~q_{rm TF}^2 approx 140 times 10^{10} {rm cm}^{-2}$. Analytic results are derived for the conductivity as a function of the charged impurity density. We also comment on the temperature dependence of the bilayer conductivity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا