Extreme-Scale Density Functional Theory High Performance Computing of DGDFT for Tens of Thousands of Atoms using Millions of Cores on Sunway TaihuLight


Abstract in English

High performance computing (HPC) is a powerful tool to accelerate the Kohn-Sham density functional theory (KS-DFT) calculations on modern heterogeneous supercomputers. Here, we describe a massively extreme-scale parallel and portable implementation of discontinuous Galerkin density functional theory (DGDFT) method on the Sunway TaihuLight supercomputer. The DGDFT method uses the adaptive local basis (ALB) functions generated on-the-fly during the self-consistent field (SCF) iteration to solve the KS equations with the high precision comparable to that of plane-wave basis set. In particular, the DGDFT method adopts a two-level parallelization strategy that makes use of different types of data distribution, task scheduling, and data communication schemes, and combines with the feature of master-slave multi-thread heterogeneous parallelism of SW26010 processor, resulting in extreme-scale HPC KS-DFT calculations on the Sunway TaihuLight supercomputer. We show that the DGDFT method can scale up to 8,519,680 processing cores (131,072 core groups) on the Sunway TaihuLight supercomputer for investigating the electronic structures of two-dimensional (2D) metallic graphene systems containing tens of thousands of carbon atoms.

Download