Do you want to publish a course? Click here

Detective quantum efficiency of photon-counting CdTe and Si detectors for computed tomography: a simulation study

53   0   0.0 ( 0 )
 Added by Mats Persson
 Publication date 2020
  fields Physics
and research's language is English
 Authors Mats Persson




Ask ChatGPT about the research

Purpose: Developing photon-counting CT detectors requires understanding the impact of parameters such as converter material, absorption length and pixel size. We apply a novel linear-systems framework, incorporating spatial and energy resolution, to study realistic silicon (Si) and cadmium telluride (CdTe) detectors at low count rate. Approach: We compared CdTe detector designs with $0.5times0.5; mathrm{mm}^2$ and $0.225times0.225; mathrm{mm}^2$ pixels and Si detector designs with $0.5times0.5; mathrm{mm}^2$ pixels of 30 and 60 mm active absorption length, with and without tungsten scatter blockers. Monte-Carlo simulations of photon transport were used together with Gaussian charge sharing models fitted to published data. Results: For detection in a 300 mm thick object at 120 kVp, the 0.5 mm and 0.225 mm pixel CdTe systems have 28-41 $%$ and 5-29 $%$ higher DQE, respectively, than the 60 mm Si system with tungsten, whereas the corresponding numbers for two-material decomposition are 2 $%$ lower to 11 $%$ higher DQE and 31-54 $%$ lower DQE compared to Si. We also show that combining these detectors with dual-spectrum acquisition is beneficial. Conclusions: In the low-count-rate regime, CdTe detector systems outperform the Si systems for detection tasks, while silicon outperforms one or both of the CdTe systems for material decomposition.

rate research

Read More

Computer tomography is one of the most promising new methods to image abnormal tissues inside the human body. Tomography is also used to position the patient accurately before radiation therapy. Hadron therapy for treating cancer has become one of the most advantageous and safe options. In order to fully utilize the advantages of hadron therapy, there is a necessity of performing radiography with hadrons as well. In this paper we present the development of a proton computed tomography system. Our second-generation proton tomography system consists of two upstream and two downstream trackers made up of fibers as active material and a range detector consisting of plastic scintillators. We present details of the detector system, readout electronics, and data acquisition system as well as the commissioning of the entire system. We also present preliminary results from the test beam of the range detector.
The purpose of this work is to develop viable procedures for verifying the applicability of personalized dosimetry in computed tomography (CT) using Monte Carlo-based simulations. Mobile equipment together with customized software was developed and used for rapid, non-invasive determination of equivalent source models of CT scanners under clinical conditions. Standard and anthropomorphic CT dose phantoms equipped with real-time CT dose probes at five representative positions were scanned. The accumulated dose was measured during the scan at the five positions. ImpactMC, a Monte Carlo-based CT dose software program, was used to simulate the scan. The necessary inputs were obtained from the scan parameters, from the equivalent source models and from the material-segmented CT images of the phantoms. Post-scan 3D dose distributions in the phantoms were simulated and the dose values calculated at the five positions inside the phantom were compared to measured dose values. Initial results were obtained by means of a General Electric Optima CT 660 and a Toshiba (Canon) Aquilion ONE. In general, the measured and calculated dose values were within relative uncertainties that had been estimated to be less than 10%. The procedures developed, which allow the post-CT scan dose to be measured and calculated at five points inside anthropomorphic phantoms, were found to be viable and rapid. The procedures are applicable to any scanner type under clinical conditions. Results show that the procedures are well suited for verifying the applicability of personalized CT dosimetry based on post-scan Monte Carlo calculations.
The polarizing multi-photon quantum states tomography with non-unit quantum efficiency of detectors is considered. A new quantum tomography protocol is proposed. This protocol considers events of losing photons of multi-photon quantum state in one or more channels among with n-fold coincidence events. The advantage of the proposed protocol compared with the standard n-fold coincidence protocol is demonstrated using the methods of statistical analysis.
A computer-aided detection (CAD) system for the identification of lung internal nodules in low-dose multi-detector helical Computed Tomography (CT) images was developed in the framework of the MAGIC-5 project. The three modules of our lung CAD system, a segmentation algorithm for lung internal region identification, a multi-scale dot-enhancement filter for nodule candidate selection and a multi-scale neural technique for false positive finding reduction, are described. The results obtained on a dataset of low-dose and thin-slice CT scans are shown in terms of free response receiver operating characteristic (FROC) curves and discussed.
134 - I. Gori , R. Bellotti , P. Cerello 2007
A computer-aided detection (CAD) system for the identification of pulmonary nodules in low-dose multi-detector helical Computed Tomography (CT) images with 1.25 mm slice thickness is presented. The basic modules of our lung-CAD system, a dot-enhancement filter for nodule candidate selection and a neural classifier for false-positive finding reduction, are described. The results obtained on the collected database of lung CT scans are discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا