Do you want to publish a course? Click here

Quantum Computing Assisted Deep Learning for Fault Detection and Diagnosis in Industrial Process Systems

96   0   0.0 ( 0 )
 Added by Fengqi You
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Quantum computing (QC) and deep learning techniques have attracted widespread attention in the recent years. This paper proposes QC-based deep learning methods for fault diagnosis that exploit their unique capabilities to overcome the computational challenges faced by conventional data-driven approaches performed on classical computers. Deep belief networks are integrated into the proposed fault diagnosis model and are used to extract features at different levels for normal and faulty process operations. The QC-based fault diagnosis model uses a quantum computing assisted generative training process followed by discriminative training to address the shortcomings of classical algorithms. To demonstrate its applicability and efficiency, the proposed fault diagnosis method is applied to process monitoring of continuous stirred tank reactor (CSTR) and Tennessee Eastman (TE) process. The proposed QC-based deep learning approach enjoys superior fault detection and diagnosis performance with obtained average fault detection rates of 79.2% and 99.39% for CSTR and TE process, respectively.



rate research

Read More

Deep reinforcement learning has been recognized as an efficient technique to design optimal strategies for different complex systems without prior knowledge of the control landscape. To achieve a fast and precise control for quantum systems, we propose a novel deep reinforcement learning approach by constructing a curriculum consisting of a set of intermediate tasks defined by a fidelity threshold. Tasks among a curriculum can be statically determined using empirical knowledge or adaptively generated with the learning process. By transferring knowledge between two successive tasks and sequencing tasks according to their difficulties, the proposed curriculum-based deep reinforcement learning (CDRL) method enables the agent to focus on easy tasks in the early stage, then move onto difficult tasks, and eventually approaches the final task. Numerical simulations on closed quantum systems and open quantum systems demonstrate that the proposed method exhibits improved control performance for quantum systems and also provides an efficient way to identify optimal strategies with fewer control pulses.
As people spend up to 87% of their time indoors, intelligent Heating, Ventilation, and Air Conditioning (HVAC) systems in buildings are essential for maintaining occupant comfort and reducing energy consumption. These HVAC systems in smart buildings rely on real-time sensor readings, which in practice often suffer from various faults and could also be vulnerable to malicious attacks. Such faulty sensor inputs may lead to the violation of indoor environment requirements (e.g., temperature, humidity, etc.) and the increase of energy consumption. While many model-based approaches have been proposed in the literature for building HVAC control, it is costly to develop accurate physical models for ensuring their performance and even more challenging to address the impact of sensor faults. In this work, we present a novel learning-based framework for sensor fault-tolerant HVAC control, which includes three deep learning based components for 1) generating temperature proposals with the consideration of possible sensor faults, 2) selecting one of the proposals based on the assessment of their accuracy, and 3) applying reinforcement learning with the selected temperature proposal. Moreover, to address the challenge of training data insufficiency in building-related tasks, we propose a model-assisted learning method leveraging an abstract model of building physical dynamics. Through extensive experiments, we demonstrate that the proposed fault-tolerant HVAC control framework can significantly reduce building temperature violations under a variety of sensor fault patterns while maintaining energy efficiency.
Recent progress on intelligent fault diagnosis has greatly depended on the deep learning and plenty of labeled data. However, the machine often operates with various working conditions or the target task has different distributions with the collected data used for training (we called the domain shift problem). This leads to the deep transfer learning based (DTL-based) intelligent fault diagnosis which attempts to remit this domain shift problem. Besides, the newly collected testing data are usually unlabeled, which results in the subclass DTL-based methods called unsupervised deep transfer learning based (UDTL-based) intelligent fault diagnosis. Although it has achieved huge development in the field of fault diagnosis, a standard and open source code framework and a comparative study for UDTL-based intelligent fault diagnosis are not yet established. In this paper, commonly used UDTL-based algorithms in intelligent fault diagnosis are integrated into a unified testing framework and the framework is tested on five datasets. Extensive experiments are performed to provide a systematically comparative analysis and the benchmark accuracy for more comparable and meaningful further studies. To emphasize the importance and reproducibility of UDTL-based intelligent fault diagnosis, the testing framework with source codes will be released to the research community to facilitate future research. Finally, comparative analysis of results also reveals some open and essential issues in DTL for intelligent fault diagnosis which are rarely studied including transferability of features, influence of backbones, negative transfer, and physical priors. In summary, the released framework and comparative study can serve as an extended interface and the benchmark results to carry out new studies on UDTL-based intelligent fault diagnosis. The code framework is available at https://github.com/ZhaoZhibin/UDTL.
142 - Mushu Li , Jie Gao , Lian Zhao 2020
Mobile edge computing (MEC) is a promising technology to support mission-critical vehicular applications, such as intelligent path planning and safety applications. In this paper, a collaborative edge computing framework is developed to reduce the computing service latency and improve service reliability for vehicular networks. First, a task partition and scheduling algorithm (TPSA) is proposed to decide the workload allocation and schedule the execution order of the tasks offloaded to the edge servers given a computation offloading strategy. Second, an artificial intelligence (AI) based collaborative computing approach is developed to determine the task offloading, computing, and result delivery policy for vehicles. Specifically, the offloading and computing problem is formulated as a Markov decision process. A deep reinforcement learning technique, i.e., deep deterministic policy gradient, is adopted to find the optimal solution in a complex urban transportation network. By our approach, the service cost, which includes computing service latency and service failure penalty, can be minimized via the optimal workload assignment and server selection in collaborative computing. Simulation results show that the proposed AI-based collaborative computing approach can adapt to a highly dynamic environment with outstanding performance.
190 - John L. Orrell , Ben Loer 2020
We propose a method to assist fault mitigation in quantum computation through the use of sensors co-located near physical qubits. Specifically, we consider using transition edge sensors co-located on silicon substrates hosting superconducting qubits to monitor for energy injection from ionizing radiation, which has been demonstrated to increase decoherence in transmon qubits. We generalize from these two physical device concepts and explore the potential advantages of co-located sensors to assist fault mitigation in quantum computation. In the simplest scheme, co-located sensors beneficially assist rejection of calculations potentially affected by environmental disturbances. Investigating the potential computational advantage further required development of an extension to the standard formulation of quantum error correction. In a specific case of the standard three-qubit, bit-flip quantum error correction code, we show that given a 20% overall error probability per qubit, approximately 90% of repeated calculation attempts are correctable. However, when sensor-detectable errors account for 45% of overall error probability, the use of co-located sensors uniquely associated with independent qubits boosts the fraction of correct final-state calculations to 96%, at the cost of rejecting 7% of repeated calculation attempts.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا