Do you want to publish a course? Click here

Joint Face Completion and Super-resolution using Multi-scale Feature Relation Learning

298   0   0.0 ( 0 )
 Added by Zhilei Liu
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Previous research on face restoration often focused on repairing a specific type of low-quality facial images such as low-resolution (LR) or occluded facial images. However, in the real world, both the above-mentioned forms of image degradation often coexist. Therefore, it is important to design a model that can repair LR occluded images simultaneously. This paper proposes a multi-scale feature graph generative adversarial network (MFG-GAN) to implement the face restoration of images in which both degradation modes coexist, and also to repair images with a single type of degradation. Based on the GAN, the MFG-GAN integrates the graph convolution and feature pyramid network to restore occluded low-resolution face images to non-occluded high-resolution face images. The MFG-GAN uses a set of customized losses to ensure that high-quality images are generated. In addition, we designed the network in an end-to-end format. Experimental results on the public-domain CelebA and Helen databases show that the proposed approach outperforms state-of-the-art methods in performing face super-resolution (up to 4x or 8x) and face completion simultaneously. Cross-database testing also revealed that the proposed approach has good generalizability.



rate research

Read More

117 - Guangwei Gao , Lei Tang , Yi Yu 2021
With the growing importance of preventing the COVID-19 virus, face images obtained in most video surveillance scenarios are low resolution with mask simultaneously. However, most of the previous face super-resolution solutions can not handle both tasks in one model. In this work, we treat the mask occlusion as image noise and construct a joint and collaborative learning network, called JDSR-GAN, for the masked face super-resolution task. Given a low-quality face image with the mask as input, the role of the generator composed of a denoising module and super-resolution module is to acquire a high-quality high-resolution face image. The discriminator utilizes some carefully designed loss functions to ensure the quality of the recovered face images. Moreover, we incorporate the identity information and attention mechanism into our network for feasible correlated feature expression and informative feature learning. By jointly performing denoising and face super-resolution, the two tasks can complement each other and attain promising performance. Extensive qualitative and quantitative results show the superiority of our proposed JDSR-GAN over some comparable methods which perform the previous two tasks separately.
General image super-resolution techniques have difficulties in recovering detailed face structures when applying to low resolution face images. Recent deep learning based methods tailored for face images have achieved improved performance by jointly trained with additional task such as face parsing and landmark prediction. However, multi-task learning requires extra manually labeled data. Besides, most of the existing works can only generate relatively low resolution face images (e.g., $128times128$), and their applications are therefore limited. In this paper, we introduce a novel SPatial Attention Residual Network (SPARNet) built on our newly proposed Face Attention Units (FAUs) for face super-resolution. Specifically, we introduce a spatial attention mechanism to the vanilla residual blocks. This enables the convolutional layers to adaptively bootstrap features related to the key face structures and pay less attention to those less feature-rich regions. This makes the training more effective and efficient as the key face structures only account for a very small portion of the face image. Visualization of the attention maps shows that our spatial attention network can capture the key face structures well even for very low resolution faces (e.g., $16times16$). Quantitative comparisons on various kinds of metrics (including PSNR, SSIM, identity similarity, and landmark detection) demonstrate the superiority of our method over current state-of-the-arts. We further extend SPARNet with multi-scale discriminators, named as SPARNetHD, to produce high resolution results (i.e., $512times512$). We show that SPARNetHD trained with synthetic data cannot only produce high quality and high resolution outputs for synthetically degraded face images, but also show good generalization ability to real world low quality face images.
Limited by the cost and technology, the resolution of depth map collected by depth camera is often lower than that of its associated RGB camera. Although there have been many researches on RGB image super-resolution (SR), a major problem with depth map super-resolution is that there will be obvious jagged edges and excessive loss of details. To tackle these difficulties, in this work, we propose a multi-scale progressive fusion network for depth map SR, which possess an asymptotic structure to integrate hierarchical features in different domains. Given a low-resolution (LR) depth map and its associated high-resolution (HR) color image, We utilize two different branches to achieve multi-scale feature learning. Next, we propose a step-wise fusion strategy to restore the HR depth map. Finally, a multi-dimensional loss is introduced to constrain clear boundaries and details. Extensive experiments show that our proposed method produces improved results against state-of-the-art methods both qualitatively and quantitatively.
Face super-resolution (FSR), also known as face hallucination, which is aimed at enhancing the resolution of low-resolution (LR) face images to generate high-resolution (HR) face images, is a domain-specific image super-resolution problem. Recently, FSR has received considerable attention and witnessed dazzling advances with the development of deep learning techniques. To date, few summaries of the studies on the deep learning-based FSR are available. In this survey, we present a comprehensive review of deep learning-based FSR methods in a systematic manner. First, we summarize the problem formulation of FSR and introduce popular assessment metrics and loss functions. Second, we elaborate on the facial characteristics and popular datasets used in FSR. Third, we roughly categorize existing methods according to the utilization of facial characteristics. In each category, we start with a general description of design principles, then present an overview of representative approaches, and then discuss the pros and cons among them. Fourth, we evaluate the performance of some state-of-the-art methods. Fifth, joint FSR and other tasks, and FSR-related applications are roughly introduced. Finally, we envision the prospects of further technological advancement in this field. A curated list of papers and resources to face super-resolution are available at url{https://github.com/junjun-jiang/Face-Hallucination-Benchmark}
67 - Mi Zhang , Tieyun Qian 2021
Existing methods in relation extraction have leveraged the lexical features in the word sequence and the syntactic features in the parse tree. Though effective, the lexical features extracted from the successive word sequence may introduce some noise that has little or no meaningful content. Meanwhile, the syntactic features are usually encoded via graph convolutional networks which have restricted receptive field. To address the above limitations, we propose a multi-scale feature and metric learning framework for relation extraction. Specifically, we first develop a multi-scale convolutional neural network to aggregate the non-successive mainstays in the lexical sequence. We also design a multi-scale graph convolutional network which can increase the receptive field towards specific syntactic roles. Moreover, we present a multi-scale metric learning paradigm to exploit both the feature-level relation between lexical and syntactic features and the sample-level relation between instances with the same or different classes. We conduct extensive experiments on three real world datasets for various types of relation extraction tasks. The results demonstrate that our model significantly outperforms the state-of-the-art approaches.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا