Nonreciprocal Emergence of Hybridized Magnons in magnetic thin Films


Abstract in English

We investigate the transfer and control of nonreciprocity through magnons themselves in permalloy thin films deposited on surface oxide silicon substrate. Evidences of nonreciprocal emergence of hybridized dipole exchange magnons (spin waves) at two permalloy surfaces are provided by studying magnon transmission and asymmetry, via Brillouin light scattering measurements. The dipole dominated spin wave and exchange dominated spin wave are found to be localized near the top and bottom surfaces, respectively, and traveling along opposite directions. The nonreciprocity and the localization are intertwined and ca n be tuned by an in plane magnetic field. The effects are well explained by the magnetostatic theory and can be quantitatively reproduced by the micromagnetic simulations. Our findings provide a simple and flexible approach to nonreciprocal all magnon logi c devices with highly compatible with silicon based integrated circuit technology.

Download