Octagonal Family of Monolayers, Bulk and Nanotubes


Abstract in English

A new class of tetragonally symmetric 2D octagonal family of monolayers (o-MLs) has emerged recently and demands understanding at the fundamental level. o-MLs of metal nitride and carbide family (BN, AlN, GaN, GeC, SiC) along with C and BP are computationally designed and their stability and electronic structure are investigated. These binary o-MLs show mixed ionic and covalent bonding with the hybridized p states dominating the electronic structure around the Fermi level. Geometric and structural similarity of o-C and o-BN has been exploited to form patterned hybrid o-MLs ranging from metallic to insulating phases. Stacking of zigzag buckled o-MLs results in stable body centered tetragonal (bct)-bulk phase that is suitable for most materials from group IV, III-V and II-VI. Vertically cut chunks of o-BN and o-C bulk or stacking of o-rings, unlike rolling of hexagonal (h)-ML, provide a plausible way to form very thin o-nanotubes (o-NT). Confined and bulk structures formed with an octagonal motif are of fundamental importance to understand the underlying science and for technological applications.

Download