Do you want to publish a course? Click here

BigSurvSGD: Big Survival Data Analysis via Stochastic Gradient Descent

104   0   0.0 ( 0 )
 Added by Aliasghar Tarkhan
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In many biomedical applications, outcome is measured as a ``time-to-event (eg. disease progression or death). To assess the connection between features of a patient and this outcome, it is common to assume a proportional hazards model, and fit a proportional hazards regression (or Cox regression). To fit this model, a log-concave objective function known as the ``partial likelihood is maximized. For moderate-sized datasets, an efficient Newton-Raphson algorithm that leverages the structure of the objective can be employed. However, in large datasets this approach has two issues: 1) The computational tricks that leverage structure can also lead to computational instability; 2) The objective does not naturally decouple: Thus, if the dataset does not fit in memory, the model can be very computationally expensive to fit. This additionally means that the objective is not directly amenable to stochastic gradient-based optimization methods. To overcome these issues, we propose a simple, new framing of proportional hazards regression: This results in an objective function that is amenable to stochastic gradient descent. We show that this simple modification allows us to efficiently fit survival models with very large datasets. This also facilitates training complex, eg. neural-network-based, models with survival data.



rate research

Read More

Stochastic gradient algorithm is a key ingredient of many machine learning methods, particularly appropriate for large-scale learning.However, a major caveat of large data is their incompleteness.We propose an averaged stochastic gradient algorithm handling missing values in linear models. This approach has the merit to be free from the need of any data distribution modeling and to account for heterogeneous missing proportion.In both streaming and finite-sample settings, we prove that this algorithm achieves convergence rate of $mathcal{O}(frac{1}{n})$ at the iteration $n$, the same as without missing values. We show the convergence behavior and the relevance of the algorithm not only on synthetic data but also on real data sets, including those collected from medical register.
123 - Xi He , Liyan Xie , Yao Xie 2021
We study the variable selection problem in survival analysis to identify the most important factors affecting the survival time when the variables have prior knowledge that they have a mutual correlation through a graph structure. We consider the Cox proportional hazard model with a graph-based regularizer for variable selection. A computationally efficient algorithm is developed to solve the graph regularized maximum likelihood problem by connecting to group lasso. We provide theoretical guarantees about the recovery error and asymptotic distribution of the proposed estimators. The good performance and benefit of the proposed approach compared with existing methods are demonstrated in both synthetic and real data examples.
We systematically develop a learning-based treatment of stochastic optimal control (SOC), relying on direct optimization of parametric control policies. We propose a derivation of adjoint sensitivity results for stochastic differential equations through direct application of variational calculus. Then, given an objective function for a predetermined task specifying the desiderata for the controller, we optimize their parameters via iterative gradient descent methods. In doing so, we extend the range of applicability of classical SOC techniques, often requiring strict assumptions on the functional form of system and control. We verify the performance of the proposed approach on a continuous-time, finite horizon portfolio optimization with proportional transaction costs.
Nonparametric regression with random design is considered. Estimates are defined by minimzing a penalized empirical $L_2$ risk over a suitably chosen class of neural networks with one hidden layer via gradient descent. Here, the gradient descent procedure is repeated several times with randomly chosen starting values for the weights, and from the list of constructed estimates the one with the minimal empirical $L_2$ risk is chosen. Under the assumption that the number of randomly chosen starting values and the number of steps for gradient descent are sufficiently large it is shown that the resulting estimate achieves (up to a logarithmic factor) the optimal rate of convergence in a projection pursuit model. The final sample size performance of the estimates is illustrated by using simulated data.
Despite the strong theoretical guarantees that variance-reduced finite-sum optimization algorithms enjoy, their applicability remains limited to cases where the memory overhead they introduce (SAG/SAGA), or the periodic full gradient computation they require (SVRG/SARAH) are manageable. A promising approach to achieving variance reduction while avoiding these drawbacks is the use of importance sampling instead of control variates. While many such methods have been proposed in the literature, directly proving that they improve the convergence of the resulting optimization algorithm has remained elusive. In this work, we propose an importance-sampling-based algorithm we call SRG (stochastic reweighted gradient). We analyze the convergence of SRG in the strongly-convex case and show that, while it does not recover the linear rate of control variates methods, it provably outperforms SGD. We pay particular attention to the time and memory overhead of our proposed method, and design a specialized red-black tree allowing its efficient implementation. Finally, we present empirical results to support our findings.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا