No Arabic abstract
The mechanical response of active media ranging from biological gels to living tissues is governed by a subtle interplay between viscosity and elasticity. In this Letter, we generalize the canonical Kelvin-Voigt and Maxwell models to active viscoelastic media that break both parity and time-reversal symmetries. The resulting continuum theories exhibit viscous and elastic tensors that are both antisymmetric, or odd, under exchange of pairs of indices. We analyze how these parity violating viscoelastic coefficients determine the relaxation mechanisms and wave-propagation properties of odd materials.
Active chiral viscoelastic materials exhibit elastic responses perpendicular to the applied stresses, referred to as odd elasticity. We use a covariant formulation of viscoelasticity combined with an entropy production analysis to show that odd elasticity is not only present in active systems but also in broad classes of passive chiral viscoelastic fluids. In addition, we demonstrate that linear viscoelastic chiral solids do require activity in order to manifest odd elastic responses. In order to model the phenomenon of passive odd viscoelasticity we propose a chiral extension of Jeffreys model. We apply our covariant formalism in order to derive the dispersion relations of hydrodynamic modes and obtain clear imprints of odd viscoelastic behavior.
We describe a high-resolution, high-bandwidth technique for determining the local viscoelasticity of soft materials such as polymer gels. Loss and storage shear moduli are determined from the power spectra of thermal fluctuations of embedded micron-sized probe particles, observed with an interferometric microscope. This provides a passive, small-amplitude measurement of rheological properties over a much broader frequency range than previously accessible to microrheology. We study both F-actin biopolymer solutions and polyacrylamide (PAAm) gels, as model semiflexible and flexible systems, respectively. We observe high-frequency omega^(3/4) scaling of the shear modulus in F-actin solutions, in contrast to omega^(1/2) scaling for PAAm.
In equilibrium liquid crystals, chirality leads to a variety of spectacular three-dimensional structures, but chiral and achiral phases with the same broken continuous symmetries have identical long-time, large-scale dynamics. In this paper, we demonstrate that chirality qualitatively modifies the dynamics of layered liquid crystals in active systems in both two and three dimensions due to an active odder elasticity. In three dimensions, we demonstrate that the hydrodynamics of active cholesterics differs fundamentally from smectic-A liquid crystals, unlike their equilibrium counterpart. This distinction can be used to engineer a columnar array of vortices, with anti-ferromagnetic vorticity alignment, that can be switched on and off by external strain. A two-dimensional chiral layered state -- an array of lines on an incompressible, free-standing film of chiral active fluid with a preferred normal direction -- is generically unstable. However, this instability can be tuned in easily realisable experimental settings, when the film is either on a substrate or in an ambient fluid.
Odd viscosity arises in systems with time reversal symmetry breaking, which creates non-dissipative effects. One method to probe changes in viscosity is to examine the dynamics of a single probe particle driven though a medium, a technique known as active rheology. We show that active rheology in a system with odd viscosity and no quenched disorder reveals a variety of novel effects, including a speed up of the probe particle with increasing system density when the background medium creates a velocity boost of the driven particle due to the Magnus effect. In contrast, the probe particle velocity in the dissipation-dominated limit monotonically decreases with increasing system density. We also show that the odd viscosity imparts a Hall angle to the probe particle, and that both the Hall angle and the velocity boost depend strongly on the drive. These results should be general to other systems with odd viscosity, including skyrmions in chiral magnets.
The theory of quasi-linear viscoelasticity (QLV) is modified and developed for transversely isotropic (TI) materials under finite deformation. For the first time, distinct relaxation responses are incorporated into an integral formulation of nonlinear viscoelasticity, according to the physical mode of deformation. The theory is consistent with linear viscoelasticity in the small strain limit and makes use of relaxation functions that can be determined from small-strain experiments, given the time/deformation separability assumption. After considering the general constitutive form applicable to compressible materials, attention is restricted to incompressible media. This enables a compact form for the constitutive relation to be derived, which is used to illustrate the behaviour of the model under three key deformations: uniaxial extension, transverse shear and longitudinal shear. Finally, it is demonstrated that the Poynting effect is present in transversely isotropic, neo-Hookean, modified QLV materials under transverse shear, in contrast to neo-Hookean elastic materials subjected to the same deformation. Its presence is explained by the anisotropic relaxation response of the medium.