Do you want to publish a course? Click here

Current status and muon $g-2$ explanation of lepton portal dark matter

155   0   0.0 ( 0 )
 Added by Shohei Okawa
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper, we summarize phenomenology in lepton portal dark matter (DM) models, where DM couples to leptons and extra leptons/sleptons. There are several possible setups: complex/real scalar DM and Dirac/Majorana fermion DM. In addition, there are choices for the lepton chirality that couples to DM. We discuss the prediction of each model and compare it with the latest experimental constraints from the DM, the LHC, and the flavor experiments. We also propose a simple setup to achieve the discrepancy in the anomalous magnetic moment of muon.



rate research

Read More

77 - Ernest Ma 2021
Lepton number is promoted to an $U(1)_L$ gauge symmetry in a simple extension of the standard model. The spontaneous breaking of $U(1)_L$ by three units allows a conserved $Z_3^L$ lepton symmetry to remain, guaranteeing that neutrinos are Dirac fermions, which acquire naturally small masses from a previously proposed mechanism. Dark matter appears as a singlet scalar, with dark symmetry $Z_3^D$ derivable from $Z_3^L$. Muon $g-2$ may be explained.
We propose simple models with a flavor-dependent global $U(1)_ell$ and a discrete $mathbb{Z}_2$ symmetries to explain the anomalies in the measured anomalous magnetic dipole moments of muon and electron, $(g-2)_{mu,e}$, while simultaneously accommodating a dark matter candidate. These new symmetries are introduced not only to avoid the dangerous lepton flavor-violating decays of charged leptons, but also to ensure the stability of the dark matter. Our models can realize the opposite-sign contributions to the muon and electron $g-2$ via one-loop diagrams involving new vector-like leptons. Under the vacuum stability and perturbative unitarity bounds as well as the constraints from the dark matter direct searches and related LHC data, we find suitable parameter space to simultaneously explain $(g-2)_{mu,e}$ and the relic density. In this parameter space, the coupling of the Higgs boson with muons can be enhanced by up to $sim 38%$ from its Standard Model value, which can be tested in future collider experiments.
The longstanding $4.2 , sigma$ muon $g-2$ anomaly may be the result of a new particle species which could also couple to dark matter and mediate its annihilations in the early universe. In models where both muons and dark matter carry equal charges under a $U(1)_{L_mu-L_tau}$ gauge symmetry, the corresponding $Z^prime$ can both resolve the observed $g-2$ anomaly and yield an acceptable dark matter relic abundance, relying on annihilations which take place through the $Z^prime$ resonance. Once the value of $(g-2)_{mu}$ and the dark matter abundance are each fixed, there is very little remaining freedom in this model, making it highly predictive. We provide a comprehensive analysis of this scenario, identifying a viable range of dark matter masses between approximately 10 and 100 MeV, which falls entirely within the projected sensitivity of several accelerator-based experiments, including NA62, NA64$mu$, $M^3$, and DUNE. Furthermore, portions of this mass range predict contributions to $Delta N_{rm eff}$ which could ameliorate the tension between early and late time measurements of the Hubble constant, and which could be tested by Stage 4 CMB experiments.
111 - Shohei Okawa , Yuji Omura 2020
We explore a novel possibility that dark matter has a light mass below 1GeV in a lepton portal dark matter model. There are Yukawa couplings involving dark matter, left-handed leptons and an extra scalar doublet in the model. In the light mass region, dark matter is thermally produced via its annihilation into neutrinos. In order to obtain the correct relic abundance and avoid collider bounds, a neutral scalar is required to be light while charged scalars need to be heavier than the electroweak scale. Such a mass spectrum is realized by adjusting quartic couplings in the scalar potential or introducing an extra singlet scalar. It turns out that the mass region of 10MeV-10GeV is almost free from experimental and observational constraints. We also point out that searches for extra neutrino flux from galactic dark matter annihilations with neutrino telescopes are the best way to test our model.
In the light of the recent result of the Muon g-2 experiment and the update on the test of lepton flavour universality $R_K$ published by the LHCb collaboration, we systematically build and discuss a set of models with minimal field content that can simultaneously give: (i) a thermal Dark Matter candidate; (ii) large loop contributions to $bto sellell$ processes able to address $R_K$ and the other $B$ anomalies; (iii) a natural solution to the muon $g-2$ discrepancy through chirally-enhanced contributions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا