Probing charged lepton number violation via $ell^pm ell^{prime pm} W^mp W^mp$


Abstract in English

We study impacts of dimension-five lepton-number violating operators associated with two same-sign weak bosons, $ell^pm ell^{prime pm} W^mp W^mp$, on current and future experiments for neutrino oscillation, lepton-number violating rare processes and high-energy collider experiments. These operators can contain important information on the origin of tiny neutrino masses, which is independent of that from the so-called Weinberg operator. We examine constraints on the coefficients of the operators by the neutrino oscillation data. Upper bounds on the coefficients are also investigated by using the data for processes of lepton number violation such as neutrinoless double beta decays and $mu^-$-$e^+$ conversion. These operators can also be directly tested by searching for lepton-number violating dilepton production via the same-sign W boson fusion process at high-energy hadron colliders like the Large Hadron Collider. We find that these operators can be considerably probed by these current and future experiments.

Download