Do you want to publish a course? Click here

A search for strong magnetic fields in massive and very massive stars in the Magellanic Clouds

70   0   0.0 ( 0 )
 Added by Stefano Bagnulo
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Despite their rarity, massive stars dominate the ecology of galaxies via their strong, radiatively-driven winds throughout their lives and as supernovae in their deaths. However, their evolution and subsequent impact on their environment can be significantly affected by the presence of a magnetic field. While recent studies indicate that about 7% of OB stars in the Milky Way host strong, stable, organised (fossil) magnetic fields at their surfaces, little is known about the fields of very massive stars, nor the magnetic properties of stars outside our Galaxy. We aim to continue searching for strong magnetic fields in a diverse set of massive and very massive stars (VMS) in the Large and Small Magellanic Clouds (LMC/SMC), and we evaluate the overall capability of FORS2 to usefully search for and detect stellar magnetic fields in extra-galactic environments. We have obtained FORS2 spectropolarimetry of a sample of 41 stars, which principally consist of spectral types B, O, Of/WN, WNh, and classical WR stars in the LMC and SMC. Four of our targets are Of?p stars; one of them was just recently discovered. Each spectrum was analysed to infer the longitudinal magnetic field. No magnetic fields were formally detected in our study, although Bayesian statistical considerations suggest that the Of?p star SMC159-2 is magnetic with a dipolar field of the order of 2.4 to 4.4kG. In addition, our first constraints of magnetic fields in VMS provide interesting insights into the formation of the most massive stars in the Universe.



rate research

Read More

We present results of our study of the infrared properties of massive stars in the Large and Small Magellanic Clouds, which are based on the Spitzer SAGE surveys of these galaxies. We have compiled catalogs of spectroscopically confirmed massive stars in each galaxy, as well as photometric catalogs for a subset of these stars that have infrared counterparts in the SAGE database, with uniform photometry from 0.3 to 24 microns in the UBVIJHKs+IRAC+MIPS24 bands. These catalogs enable a comparative study of infrared excesses of OB stars, classical Be stars, yellow and red supergiants, Wolf-Rayet stars, Luminous Blue Variables and supergiant B[e] stars, as a function of metallicity, and provide the first roadmaps for interpreting luminous, massive, resolved stellar populations in nearby galaxies at infrared wavelengths.
181 - Jorick S. Vink 2014
Recent studies suggest the existence of very massive stars (VMS) up to 300 solar masses in the local Universe. As this finding may represent a paradigm shift for the canonical stellar upper-mass limit of 150 solar masses, it is timely to evaluate the physics specific to VMS, which is currently missing. For this reason, we decided to construct a book entailing both a discussion of the accuracy of VMS masses (Martins), as well as the physics of VMS formation (Krumholz), mass loss (Vink), instabilities (Owocki), evolution (Hirschi), and fate (theory -- Woosley & Heger; observations -- Smith).
In order to understand the rates and properties of Type Ia and Type Ib/c supernovae, X-ray binaries, gravitational wave sources, and gamma ray bursts as a function of galactic environment and cosmic age, it is imperative that we measure how the close binary properties of O and B-type stars vary with metallicity. We have studied eclipsing binaries with early-B main-sequence primaries in three galaxies with different metallicities: the Large and Small Magellanic Clouds (LMC and SMC, respectively) as well as the Milky Way (MW). The observed fractions of early-B stars which exhibit deep eclipses 0.25 < Delta(m) (mag) < 0.65 and orbital periods 2 < P (days) < 20 in the MW, LMC, and SMC span a narrow range of (0.7-1.0)%, which is a model independent result. After correcting for geometrical selection effects and incompleteness toward low-mass companions, we find for early-B stars in all three environments: (1) a close binary fraction of (22+/-5)% across orbital periods 2 < P (days) < 20 and mass ratios q = M_2/M_1 > 0.1, (2) an intrinsic orbital period distribution slightly skewed toward shorter periods relative to a distribution that is uniform in log P, (3) a mass-ratio distribution weighted toward low-mass companions, and (4) a small, nearly negligible excess fraction of twins with q > 0.9. Our fitted parameters derived for the MW eclipsing binaries match the properties inferred from nearby, early-type spectroscopic binaries, which further validates our results. There are no statistically significant trends with metallicity, demonstrating that the close binary properties of massive stars do not vary across metallicities -0.7 < log(Z/Z_sun) < 0.0 beyond the measured uncertainties.
Recent studies have claimed the existence of very massive stars (VMS) up to 300 solar masses in the local Universe. As this finding may represent a paradigm shift for the canonical stellar upper-mass limit of 150 Msun, it is timely to discuss the status of the data, as well as the far-reaching implications of such objects. We held a Joint Discussion at the General Assembly in Beijing to discuss (i) the determination of the current masses of the most massive stars, (ii) the formation of VMS, (iii) their mass loss, and (iv) their evolution and final fate. The prime aim was to reach broad consensus between observers and theorists on how to identify and quantify the dominant physical processes.
123 - Paul A. Crowther 2012
We use contemporary evolutionary models for Very Massive Stars (VMS) to assess whether the Eddington limit constrains the upper stellar mass limit. We also consider the interplay between mass and age for the wind properties and spectral morphology of VMS, with reference to the recently modified classification scheme for O2-3.5If*/WN stars. Finally, the death of VMS in the local universe is considered in the context of pair instability supernovae.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا