Do you want to publish a course? Click here

Exploring the Mass Segregation Effect of X-ray Sources in Globular Clusters. III. Signs of Binary Disruption in M28

70   0   0.0 ( 0 )
 Added by Zhongqun Cheng
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Using archival {it Chandra} observations with a total effective exposure of 323 ks, we derive an updated catalog of point sources in the bulge globular cluster M28. The catalog contains 502 X-ray sources within an area of $sim475, rm arcmin^{2}$, and more than $90%$ of these sources are first detected in this cluster. We find significant dips in the radial distribution profiles of X-ray sources in M28, with the projected distance and width of the distribution dip for bright ($L_{X} gtrsim 4.5times 10^{30} {rm erg ,s^{-1}}$) X-ray sources are larger than the faint ($L_{X} lesssim 4.5times 10^{30} {rm erg ,s^{-1}}$) sources. The generalized King model fitting give a slightly larger average mass for the bright sources ($1.30pm0.15,M_{odot}$) than the faint sources ($1.09pm0.14,M_{odot}$), which support a universal mass segregation delay between heavy objects in GCs. Compared with 47 Tuc and Terzan 5, we show that the dynamical age of M28 is comparable to Terzan 5 and much smaller than 47 Tuc, but it is evolving more fast (i.e., with smaller two-body relaxation timescale) than 47 Tuc. These features may suggest an acceleration effect of cluster dynamical evolution by tidal shock in M28. Besides, we find an abnormal deficiency of X-ray sources in the central region ($R lesssim 1.5 rm~arcmin$) of M28 than its outskirts, which indicate that M28 may have suffered an early phase of primordial binary disruption within its central region, and mass segregation effect will erase such a phenomenon as cluster evolve to older dynamical age.



rate research

Read More

Using archival {it Chandra} observations with a total exposure of 510 ks, we present an updated catalog of point sources for Globular Cluster 47 Tucanae. Our study covers an area of $sim 176.7$ arcmin$^{2}$ (i.e., with $Rlesssim7.5arcmin$) with 537 X-ray sources. We show that the surface density distribution of X-ray sources in 47 Tuc is highly peaked in cluster center, rapidly decreases at intermediate radii, and finally rises again at larger radii, with two distribution dips at $Rsim 100arcsec$ and $Rsim 170arcsec$ for the faint ($L_{X}lesssim 5.0times 10^{30} {rm erg,s^{-1}}$) and bright ($L_{X}gtrsim 5.0times 10^{30} {rm erg,s^{-1}}$) groups of X-ray sources, separately. These distribution features are similar to those of Blue Straggler Stars (BSS), where the distribution dip is located at $Rsim 200arcsec$ citep{ferraro2004}. By fitting the radial distribution of each group of sources with a generalized King model, we estimated an average mass of $1.51pm0.17 M_{odot}$, $1.44pm0.15 M_{odot}$ and $1.16pm0.06 M_{odot}$ for the BSS, bright and faint X-ray sources, respectively. These results are consistent with the mass segregation effect of heavy objects in GCs, where more massive objects drop to the cluster center faster and their distribution dip propagates outward further. Besides, the peculiar distribution profiles of X-ray sources and BSS are also consistent with the mass segregation model of binaries in GCs, which suggests that in addition to the dynamical formation channel, primordial binaries are also a significant contributor to the X-ray source population in GCs.
Using archival {it Chandra} observations with a total effective exposure of 734 ks, we derive an updated catalog of point sources in the massive globular cluster Terzan 5. Our catalog covers an area of $58.1, rm arcmin^{2}$ ($Rleq 4.3 , rm arcmin$) with 489 X-ray sources, and more than $75%$ of these sources are first detected in this cluster. We find significant dips in the radial distribution profiles of X-ray sources in Terzan 5, with the projected distance and width of the distribution dips for bright ($L_{X} gtrsim 9.5times 10^{30} {rm erg ,s^{-1}}$) X-ray sources are larger than that of the faint ($L_{X} lesssim 9.5times 10^{30} {rm erg ,s^{-1}}$) sources. By fitting the radial distribution of the X-ray sources with ageneralized King model, we estimated an average mass of $1.48pm0.11,M_{odot}$ and $1.27pm0.13,M_{odot}$ for the bright and faint X-ray sources, respectively. These results are in agreement with that observed in 47 Tuc, which may suggest a universal mass segregation effect for X-ray sources in GCs. Compared with 47 Tuc, we show that the two-body relaxation timescale of Terzan 5 is much smaller, but its dynamical age is significantly younger than 47 Tuc. These features suggest that the evolution of Terzan 5 is not purely driven by two-body relaxation, and tidal stripping effect also plays an important role in accelerating the dynamical evolution of this cluster.
Using X-ray sources as sensitive probes of stellar dynamical interactions in globular clusters (GCs), we study the mass segregation and binary burning processes in $omega$ Cen. We show that the mass segregation of X-ray sources is quenched in $omega$ Cen, while the X-ray source abundance of $omega$ Cen is much smaller than other GCs, and the binary hardness ratio (defined as $L_{rm X}/(L_{rm K}f_{b})$, with $f_{b}$ the binary fraction, $L_{rm X}$ and $L_{rm K}$ the cumulative X-ray and K band luminosity of GCs, respectively) of $omega$ Cen is located far below the $L_{rm X}/(L_{rm K}f_{b})-sigma_{c}$ correlation line of the dynamically normal GCs. These evidences suggest that the binary burning processes are highly suppressed in $omega$ Cen, and other heating mechanisms, very likely a black hole subsystem (BHS), are essential in the dynamical evolution of $omega$ Cen. Through the black hole burning processes (i.e., dynamical hardening of the BH binaries), the BHS is dominating the energy production of $omega$ Cen, which also makes $omega$ Cen a promising factory of gravitational-wave sources in the Galaxy.
Using deep Chandra observations of the globular cluster M28, we study the quiescent X-ray emission of a neutron star in a low-mass X-ray binary in order to constrain the chemical composition of the neutron star atmosphere and the equation of state of dense matter. We fit the spectrum with different neutron star atmosphere models composed of hydrogen, helium or carbon. The parameter values obtained with the carbon model are unphysical and such a model can be ruled out. Hydrogen and helium models give realistic parameter values for a neutron star, and the derived mass and radius are clearly distinct depending on the composition of the atmosphere. The hydrogen model gives masses/radii consistent with the canonical values of 1.4 Msun and 10 km, and would allow for the presence of exotic matter inside neutron stars. On the other hand, the helium model provides solutions with higher masses/radii, consistent with the stiffest equations of state. Measurements of neutron star masses/radii by spectral fitting should consider the possibility of heavier element atmospheres, which produce larger masses/radii for the same data, unless the composition of the accretor is known independently.
A number of ultraluminous X-ray sources (ULXs) are physically associated with extragalactic globular clusters (GCs). We undertake a systematic X-ray analysis of eight of the brightest of these sources. We fit the spectra of the GC ULXs to single power law and single disk models. We find that the data never require that any of the sources change between a disk and a power law across successive observations. The GC ULXs best fit by a single disk show a bimodal distribution: they either have temperatures well below 0.5 keV, or variable temperatures ranging above 0.5 keV up to 2~keV. The GC ULXs with low kT have significant changes in luminosity but show little or no change in kT. By contrast, the sources with higher kT either change in both kT and $L_X$ together, or show no significant change in either parameter. Notably, the X-ray characteristics may be related to the optical properties of these ULXs, with the two lowest kT sources showing optical emission lines.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا