Sums of averages of gcd-sum functions II


Abstract in English

Let $gcd(k,j)$ denote the greatest common divisor of the integers $k$ and $j$, and let $r$ be any fixed positive integer. Define $$ M_r(x; f) := sum_{kleq x}frac{1}{k^{r+1}}sum_{j=1}^{k}j^{r}f(gcd(j,k)) $$ for any large real number $xgeq 5$, where $f$ is any arithmetical function. Let $phi$, and $psi$ denote the Euler totient and the Dedekind function, respectively. In this paper, we refine asymptotic expansions of $M_r(x; {rm id})$, $M_r(x;{phi})$ and $M_r(x;{psi})$. Furthermore, under the Riemann Hypothesis and the simplicity of zeros of the Riemann zeta-function, we establish the asymptotic formula of $M_r(x;{rm id})$ for any large positive number $x>5$ satisfying $x=[x]+frac{1}{2}$.

Download