Do you want to publish a course? Click here

Magnetars from Neutron Star--White Dwarf Mergers: Application to Fast Radio Bursts

124   0   0.0 ( 0 )
 Added by Zigao Dai
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

It is widely believed that magnetars could be born in core-collapse supernovae (SNe), binary neutron star (BNS) or binary white dwarf (BWD) mergers, or accretion-induced collapse (AIC) of white dwarfs. In this paper, we investigate whether magnetars could also be produced from neutron star--white dwarf (NSWD) mergers, motivated by FRB 180924-like fast radio bursts (FRBs) possibly from magnetars born in BNS/BWD/AIC channels suggested by cite{mar19}. By a preliminary calculation, we find that NSWD mergers with unstable mass transfer could result in the NS acquiring an ultra-strong magnetic field via the dynamo mechanism due to differential rotation and convection or possibly via the magnetic flux conservation scenario of a fossil field. If NSWD mergers can indeed create magnetars, then such objects could produce at least a subset of FRB 180924-like FRBs within the framework of flaring magnetars, since the ejecta, local environments, and host galaxies of the final remnants from NSWD mergers resemble those of BNS/BWD/AIC channels. This NSWD channel is also able to well explain both the observational properties of FRB 180924-like and FRB 180916.J0158+65-like FRBs within a large range in local environments and host galaxies.



rate research

Read More

Recently, Thornton et al. reported the detection of four fast radio bursts (FRBs). The dispersion measures indicate that the sources of these FRBs are at cosmological distance. Given the large full sky event rate ~ 10^4 sky^-1 day^-1, the FRBs are a promising target for multi-messenger astronomy. Here we propose double degenerate, binary white-dwarf (WD) mergers as the source of FRBs, which are produced by coherent emission from the polar region of a rapidly rotating, magnetized massive WD formed after the merger. The basic characteristics of the FRBs, such as the energetics, emission duration and event rate, can be consistently explained in this scenario. As a result, we predict that some FRBs can accompany type Ia supernovae (SNe Ia) or X-ray debris disks. Simultaneous detection could test our scenario and probe the progenitors of SNe Ia, and moreover would provide a novel constraint on the cosmological parameters. We strongly encourage future SN and X-ray surveys that follow up FRBs.
216 - Tomonori Totani 2013
Fast radio bursts (FRBs) at cosmological distances have recently been discovered, whose duration is about milliseconds. We argue that the observed short duration is difficult to explain by giant flares of soft gamma-ray repeaters, though their event rate and energetics are consistent with FRBs. Here we discuss binary neutron star (NS-NS) mergers as a possible origin of FRBs. The FRB rate is within the plausible range of NS-NS merger rate and its cosmological evolution, while a large fraction of NS-NS mergers must produce observable FRBs. A likely radiation mechanism is coherent radio emission like radio pulsars, by magnetic braking when magnetic fields of neutron stars are synchronized to binary rotation at the time of coalescence. Magnetic fields of the standard strength (~ 10^{12-13} G) can explain the observed FRB fluxes, if the conversion efficiency from magnetic braking energy loss to radio emission is similar to that of isolated radio pulsars. Corresponding gamma-ray emission is difficult to detect by current or past gamma-ray burst satellites. Since FRBs tell us the exact time of mergers, a correlated search would significantly improve the effective sensitivity of gravitational wave detectors.
75 - S.B. Popov 2018
We briefly review main observational properties of fast radio bursts (FRBs) and discuss two most popular hypothesis for the explanation of these enigmatic intense millisecond radio flashes. FRBs most probably originate on extragalactic distances, and their rate on the sky is about a few thousand per day with fluences above $sim$~1~Jy~ms (or with fluxes larger than few tenths of Jy). Two leading scenarios describing these events include strong flares of magnetars and supergiant pulses of young radio pulsars with large rotational energy losses, correspondingly. At the moment, it is impossible to choose between these models. However, new telescopes can help to solve the puzzle of FRBs in near future.
170 - Maxim Lyutikov 2020
We discuss coherent free electron laser (FEL) operating during explosive reconnection events in magnetized pair plasma of magnetar magnetospheres. The model explains many salient features of Fast Radio Bursts/magnetars radio emission: temporal coincidence of radio and high energy bursts, high efficiency of conversion of plasma kinetic energy into coherent radiation, presence of variable, narrow-band emission features drifting down in frequency, high degree of linear polarization. The model relies on magnetar-specific drifting $e^pm$ plasma components (which generate wiggler field due to the development of the firehose instability) and the presence of reconnection-generated particle beam with mild Lorentz factor of $gamma_b sim$ few hundred.
77 - Bing Zhang 2020
Recently, one fast radio burst, FRB 200428, was detected from the Galactic magnetar SGR J1935+2154 during one X-ray burst. This suggests that magnetars can make FRBs. On the other hand, the majority of X-ray bursts from SGR J1935+2154 are not associated with FRBs. One possible reason for such rarity of FRB-SGR-burst associations is that the FRB emission is much more narrowly beamed than the SGR burst emission. If such an interpretation is correct, one would expect to detect radio bursts with viewing angles somewhat outside the narrow emission beam. These slow radio bursts (SRBs) would have broader widths and lower flux densities due to the smaller Doppler factor involved. We derive two closure relations to judge whether a long, less luminous radio burst could be an SRB. The 2.2-s, 308 Jy ms, 111 MHz radio burst detected from SGR J1935+2154 by the BSA LPI radio telescope may be such an SRB. The 2-ms, 60 mJy ms faint burst detected by FAST from the same source could be also an SRB if the corresponding FRB has a narrow spectrum. If the FRB beam is narrow, there should be many more SRBs than FRBs from Galactic magnetars. The lack of detection of abundant SRBs from magnetars would disfavor the hypothesis that all SGR bursts are associated with narrow-beam FRBs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا