Do you want to publish a course? Click here

Missing water in Class I protostellar disks

96   0   0.0 ( 0 )
 Added by Daniel Harsono
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Water is a key volatile that provides insights into the initial stages of planet formation. The low water abundances inferred from water observations toward low-mass protostellar objects may point to a rapid locking of water as ice by large dust grains during star and planet formation. However, little is known about the water vapor abundance in newly formed planet-forming disks. We aim to determine the water abundance in embedded Keplerian disks through spatially-resolved observations of H$_2^{18}$O lines to understand the evolution of water during star and planet formation. We present H$_2^{18}$O line observations with ALMA and NOEMA millimeter interferometers toward five young stellar objects. NOEMA observed the 3$_{1,3}$ - $2_{2,0}$ line (E$_{rm up}$ = 203.7 K) while ALMA targeted the $4_{1,4}$ - $3_{2,1}$ line (E$_{rm up}$ = 322.0 K). Water column densities are derived considering optically thin and thermalized emission. Our observations are sensitive to the emission from the known Keplerian disks around three out of the five Class I objects in the sample. No H$_2^{18}$O emission is detected toward any of our five Class I disks. We report upper limits to the integrated line intensities. The inferred water column densities in Class I disks are N < 10$^{15}$ cm$^{-2}$ on 100 au scales which include both disk and envelope. The upper limits imply a disk-averaged water abundance of $lesssim 10^{-6}$ with respect to H$_2$ for Class I objects. After taking into account the physical structure of the disk, the upper limit to the water abundance averaged over the inner warm disk with $T>$ 100 K is between 10$^{-7}$ up to 10$^{-5}$. Water vapor is not abundant in warm protostellar envelopes around Class I protostars. Upper limits to the water vapor column densities in Class I disks are at least two orders magnitude lower than values found in Class 0 disk-like structures.



rate research

Read More

We perform a comparative numerical hydrodynamics study of embedded protostellar disks formed as a result of the gravitational collapse of cloud cores of distinct mass (M_cl=0.2--1.7 M_sun) and ratio of rotational to gravitational energy (beta=0.0028--0.023). An increase in M_cl and/or beta leads to the formation of protostellar disks that are more susceptible to gravitational instability. Disk fragmentation occurs in most models but its effect is often limited to the very early stage, with the fragments being either dispersed or driven onto the forming star during tens of orbital periods. Only cloud cores with high enough M_cl or beta may eventually form wide-separation binary/multiple systems with low mass ratios and brown dwarf or sub-solar mass companions. It is feasible that such systems may eventually break up, giving birth to rogue brown dwarfs. Protostellar disks of {it equal} age formed from cloud cores of greater mass (but equal beta) are generally denser, hotter, larger, and more massive. On the other hand, protostellar disks formed from cloud cores of higher beta (but equal M_cl) are generally thinner and colder but larger and more massive. In all models, the difference between the irradiation temperature and midplane temperature triangle T is small, except for the innermost regions of young disks, dense fragments, and disks outer edge where triangle T is negative and may reach a factor of two or even more. Gravitationally unstable, embedded disks show radial pulsations, the amplitude of which increases along the line of increasing M_cl and beta but tends to diminish as the envelope clears. We find that single stars with a disk-to-star mass ratio of order unity can be formed only from high-beta cloud cores, but such massive disks are unstable and quickly fragment into binary/multiple systems.
378 - E. I. Vorobyov 2020
The early evolution of protostellar disks with metallicities in the $Z=1.0-0.01~Z_odot$ range was studied with a particular emphasis on the strength of gravitational instability and the nature of protostellar accretion in low-metallicity systems. Numerical hydrodynamics simulations in the thin-disk limit were employed that feature separate gas and dust temperatures, and disk mass-loading from the infalling parental cloud cores. Models with cloud cores of similar initial mass and rotation pattern, but distinct metallicity were considered to distinguish the effect of metallicity from that of initial conditions. The early stages of disk evolution in low-metallicity models are characterized by vigorous gravitational instability and fragmentation. Disk instability is sustained by continual mass-loading from the collapsing core. The time period that is covered by this unstable stage is much shorter in the $Z=0.01~Z_odot$ models as compared to their higher metallicity counterparts thanks to the higher mass infall rates caused by higher gas temperatures (that decouple from lower dust temperatures) in the inner parts of collapsing cores. Protostellar accretion rates are highly variable in the low-metallicity models reflecting a highly dynamical nature of the corresponding protostellar disks. The low-metallicity systems feature short, but energetic episodes of mass accretion caused by infall of inward-migrating gaseous clumps that form via gravitational fragmentation of protostellar disks. These bursts seem to be more numerous and last longer in the $Z=0.1~Z_odot$ models in comparison to the $Z=0.01~Z_odot$ case. Variable protostellar accretion with episodic bursts is not a particular feature of solar metallicity disks. It is also inherent to gravitationally unstable disks with metallicities up to 100 times lower than solar.
We present a mechanism for the crystalline silicate production associated with the formation and subsequent destruction of massive fragments in young protostellar disks. The fragments form in the embedded phase of star formation via disk fragmentation at radial distances ga 50-100 AU and anneal small amorphous grains in their interior when the gas temperature exceeds the crystallization threshold of ~ 800 K. We demonstrate that fragments that form in the early embedded phase can be destroyed before they either form solid cores or vaporize dust grains, thus releasing the processed crystalline dust into various radial distances from sub-AU to hundred-AU scales. Two possible mechanisms for the destruction of fragments are the tidal disruption and photoevaporation as fragments migrate radially inward and approach the central star and also dispersal by tidal torques exerted by spiral arms. As a result, most of the crystalline dust concentrates to the disk inner regions and spiral arms, which are the likely sites of fragment destruction.
Using numerical hydrodynamics simulations we studied the gravitational collapse of pre-stellar cores of sub-solar mass embedded into a low-density external environment. Four models with different magnitude and direction of rotation of the external environment with respect to the central core were studied and compared with an isolated model. We found that the infall of matter from the external environment can significantly alter the disk properties as compared to those seen in the isolated model. Depending on the magnitude and direction of rotation of the external environment, a variety of disks can form including compact (<= 200 AU) ones shrinking in size due to infall of external matter with low angular momentum, as well as extended disks forming due to infall of external matter with high angular momentum. The former are usually stable against gravitational fragmentation, while the latter are prone to fragmentation and formation of stellar systems with sub-stellar/very-low-mass companions. In the case of counterrotating external environment, very compact (< 5 AU) and short-lived (<= a few * 10^5 yr) disks can form when infalling material has low angular momentum. The most interesting case is found for the infall of counterrotating external material with high angular momentum, leading to the formation of counterrotating inner and outer disks separated by a deep gap at a few tens AU. The gap migrates inward due to accretion of the inner disk onto the protostar, turns into a central hole, and finally disappears giving way to the outer strongly gravitationally unstable disk. This model may lead to the emergence of a transient stellar system with sub-stellar/very-low-mass components counterrotating with respect to that of the star.
We performed very deep searches for 2 ground-state water transitions in 13 protoplanetary disks with the HIFI instrument on-board the Herschel Space Observatory, with integration times up to 12 hours per line. Two other water transitions that sample warmer gas were also searched for with shallower integrations. The detection rate is low, and the upper limits provided by the observations are generally much lower than predictions of thermo-chemical models with canonical inputs. One ground-state transition is newly detected in the stacked spectrum of AA Tau, DM Tau, LkCa 15, and MWC 480. We run a grid of models to show that the abundance of gas-phase oxygen needs to be reduced by a factor of at least ~100 to be consistent with the observational upper limits (and positive detections) if a dust-to-gas mass ratio of 0.01 were to be assumed. As a continuation of previous ideas, we propose that the underlying reason for the depletion of oxygen (hence the low detection rate) is the freeze-out of volatiles such as water and CO onto dust grains followed by grain growth and settling/migration, which permanently removes these gas-phase molecules from the emissive upper layers of the outer disk. Such depletion of volatiles is likely ubiquitous among different disks, though not necessarily to the same degree. The volatiles might be returned back to the gas phase in the inner disk (within about 15 AU), which is consistent with current constraints. Comparison with studies on disk dispersal due to photoevaporation indicates that the timescale for volatile depletion is shorter than that of photoevaporation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا