No Arabic abstract
Scientists and engineers often create accurate, trustworthy, computational simulation schemes - but all too often these are too computationally expensive to execute over the time or spatial domain of interest. The equation-free approach is to marry such trusted simulations to a framework for numerical macroscale reduction - the patch dynamics scheme. This article extends the patch scheme to scenarios in which the trusted simulation resolves abrupt state changes on the microscale that appear as shocks on the macroscale. Accurate simulation for problems in these scenarios requires extending the patch scheme by capturing the shock within a novel patch, and also modifying the patch coupling rules in the vicinity in order to maintain accuracy. With these two extensions to the patch scheme, straightforward arguments derive consistency conditions that match the usual order of accuracy for patch schemes. The new scheme is successfully tested on four archetypal problems. This technique will empower scientists and engineers to accurately and efficiently simulate, over large spatial domains, multiscale multiphysics systems that have rapid transition layers on the microscale.
The Equation-Free approach to efficient multiscale numerical computation marries trusted micro-scale simulations to a framework for numerical macro-scale reduction -- the patch dynamics scheme. A recent novel patch scheme empowered the Equation-Free approach to simulate systems containing shocks on the macro-scale. However, the scheme did not predict the formation of shocks accurately, and it could not simulate moving shocks. This article resolves both issues, as a first step in one spatial dimension, by embedding the Equation-Free, shock-resolving patch scheme within a classic framework for adaptive moving meshes. Our canonical micro-scale problems exhibit heterogeneous nonlinear advection and heterogeneous diffusion. We demonstrate many remarkable benefits from the moving patch scheme, including efficient and accurate macro-scale prediction despite the unknown macro-scale closure. Equation-free methods are here extended to simulate moving, forming and merging shocks without a priori knowledge of the existence or closure of the shocks. Whereas adaptive moving mesh equations are typically stiff, typically requiring small time-steps on the macro-scale, the moving macro-scale mesh of patches is typically not stiff given the context of the micro-scale time-steps required for the sub-patch dynamics.
For time-dependent problems with high-contrast multiscale coefficients, the time step size for explicit methods is affected by the magnitude of the coefficient parameter. With a suitable construction of multiscale space, one can achieve a stable temporal splitting scheme where the time step size is independent of the contrast. Consider the parabolic equation with heterogeneous diffusion parameter, the flow rates vary significantly in different regions due to the high-contrast features of the diffusivity. In this work, we aim to introduce a multirate partially explicit splitting scheme to achieve efficient simulation with the desired accuracy. We first design multiscale subspaces to handle flow with different speed. For the fast flow, we obtain a low-dimensional subspace with respect to the high-diffusive component and adopt an implicit time discretization scheme. The other multiscale subspace will take care of the slow flow, and the corresponding degrees of freedom are treated explicitly. Then a multirate time stepping is introduced for the two parts. The stability of the multirate methods is analyzed for the partially explicit scheme. Moreover, we derive local error estimators corresponding to the two components of the solutions and provide an upper bound of the errors. An adaptive local temporal refinement framework is then proposed to achieve higher computational efficiency. Several numerical tests are presented to demonstrate the performance of the proposed method.
In this paper, we present a finite difference heterogeneous multiscale method for the Landau-Lifshitz equation with a highly oscillatory diffusion coefficient. The approach combines a higher order discretization and artificial damping in the so-called micro problem to obtain an efficient implementation. The influence of different parameters on the resulting approximation error is discussed. Numerical examples for both periodic as well as more general coefficients are given to demonstrate the functionality of the approach.
We introduce a residual-based stabilized formulation for incompressible Navier-Stokes flow that maintains discrete (and, for divergence-conforming methods, strong) mass conservation for inf-sup stable spaces with $H^1$-conforming pressure approximation, while providing optimal convergence in the diffusive regime, robustness in the advective regime, and energetic stability. The method is formally derived using the variational multiscale (VMS) concept, but with a discrete fine-scale pressure field which is solved for alongside the coarse-scale unknowns such that the coarse and fine scale velocities separately satisfy discrete mass conservation. We show energetic stability for the full Navier-Stokes problem, and we prove convergence and robustness for a linearized model (Oseen flow), under the assumption of a divergence-conforming discretization. Numerical results indicate that all properties extend to the fully nonlinear case and that the proposed formulation can serve to model unresolved turbulence.
In this paper, we consider several possible ways to set up Heterogeneous Multiscale Methods for the Landau-Lifshitz equation with a highly oscillatory diffusion coefficient, which can be seen as a means to modeling rapidly varying ferromagnetic materials. We then prove estimates for the errors introduced when approximating the relevant quantity in each of the models given a periodic problem, using averaging in time and space of the solution to a corresponding micro problem. In our setup, the Landau-Lifshitz equation with highly oscillatory coefficient is chosen as the micro problem for all models. We then show that the averaging errors only depend on $varepsilon$, the size of the microscopic oscillations, as well as the size of the averaging domain in time and space and the choice of averaging kernels.