Do you want to publish a course? Click here

Universal Phone Recognition with a Multilingual Allophone System

213   0   0.0 ( 0 )
 Added by Xinjian Li
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Multilingual models can improve language processing, particularly for low resource situations, by sharing parameters across languages. Multilingual acoustic models, however, generally ignore the difference between phonemes (sounds that can support lexical contrasts in a particular language) and their corresponding phones (the sounds that are actually spoken, which are language independent). This can lead to performance degradation when combining a variety of training languages, as identically annotated phonemes can actually correspond to several different underlying phonetic realizations. In this work, we propose a joint model of both language-independent phone and language-dependent phoneme distributions. In multilingual ASR experiments over 11 languages, we find that this model improves testing performance by 2% phoneme error rate absolute in low-resource conditions. Additionally, because we are explicitly modeling language-independent phones, we can build a (nearly-)universal phone recognizer that, when combined with the PHOIBLE large, manually curated database of phone inventories, can be customized into 2,000 language dependent recognizers. Experiments on two low-resourced indigenous languages, Inuktitut and Tusom, show that our recognizer achieves phone accuracy improvements of more than 17%, moving a step closer to speech recognition for all languages in the world.



rate research

Read More

The use of phonological features (PFs) potentially allows language-specific phones to remain linked in training, which is highly desirable for information sharing for multilingual and crosslingual speech recognition methods for low-resourced languages. A drawback suffered by previous methods in using phonological features is that the acoustic-to-PF extraction in a bottom-up way is itself difficult. In this paper, we propose to join phonology driven phone embedding (top-down) and deep neural network (DNN) based acoustic feature extraction (bottom-up) to calculate phone probabilities. The new method is called JoinAP (Joining of Acoustics and Phonology). Remarkably, no inversion from acoustics to phonological features is required for speech recognition. For each phone in the IPA (International Phonetic Alphabet) table, we encode its phonological features to a phonological-vector, and then apply linear or nonlinear transformation of the phonological-vector to obtain the phone embedding. A series of multilingual and crosslingual (both zero-shot and few-shot) speech recognition experiments are conducted on the CommonVoice dataset (German, French, Spanish and Italian) and the AISHLL-1 dataset (Mandarin), and demonstrate the superiority of JoinAP with nonlinear phone embeddings over both JoinAP with linear phone embeddings and the traditional method with flat phone embeddings.
Multilingual acoustic models have been successfully applied to low-resource speech recognition. Most existing works have combined many small corpora together and pretrained a multilingual model by sampling from each corpus uniformly. The model is eventually fine-tuned on each target corpus. This approach, however, fails to exploit the relatedness and similarity among corpora in the training set. For example, the target corpus might benefit more from a corpus in the same domain or a corpus from a close language. In this work, we propose a simple but useful sampling strategy to take advantage of this relatedness. We first compute the corpus-level embeddings and estimate the similarity between each corpus. Next, we start training the multilingual model with uniform-sampling from each corpus at first, then we gradually increase the probability to sample from related corpora based on its similarity with the target corpus. Finally, the model would be fine-tuned automatically on the target corpus. Our sampling strategy outperforms the baseline multilingual model on 16 low-resource tasks. Additionally, we demonstrate that our corpus embeddings capture the language and domain information of each corpus.
End-to-end multilingual speech recognition involves using a single model training on a compositional speech corpus including many languages, resulting in a single neural network to handle transcribing different languages. Due to the fact that each language in the training data has different characteristics, the shared network may struggle to optimize for all various languages simultaneously. In this paper we propose a novel multilingual architecture that targets the core operation in neural networks: linear transformation functions. The key idea of the method is to assign fast weight matrices for each language by decomposing each weight matrix into a shared component and a language dependent component. The latter is then factorized into vectors using rank-1 assumptions to reduce the number of parameters per language. This efficient factorization scheme is proved to be effective in two multilingual settings with $7$ and $27$ languages, reducing the word error rates by $26%$ and $27%$ rel. for two popular architectures LSTM and Transformer, respectively.
We introduce a new resource, AlloVera, which provides mappings from 218 allophones to phonemes for 14 languages. Phonemes are contrastive phonological units, and allophones are their various concrete realizations, which are predictable from phonological context. While phonemic representations are language specific, phonetic representations (stated in terms of (allo)phones) are much closer to a universal (language-independent) transcription. AlloVera allows the training of speech recognition models that output phonetic transcriptions in the International Phonetic Alphabet (IPA), regardless of the input language. We show that a universal allophone model, Allosaurus, built with AlloVera, outperforms universal phonemic models and language-specific models on a speech-transcription task. We explore the implications of this technology (and related technologies) for the documentation of endangered and minority languages. We further explore other applications for which AlloVera will be suitable as it grows, including phonological typology.
398 - Yubei Xiao , Ke Gong , Pan Zhou 2020
Low-resource automatic speech recognition (ASR) is challenging, as the low-resource target language data cannot well train an ASR model. To solve this issue, meta-learning formulates ASR for each source language into many small ASR tasks and meta-learns a model initialization on all tasks from different source languages to access fast adaptation on unseen target languages. However, for different source languages, the quantity and difficulty vary greatly because of their different data scales and diverse phonological systems, which leads to task-quantity and task-difficulty imbalance issues and thus a failure of multilingual meta-learning ASR (MML-ASR). In this work, we solve this problem by developing a novel adversarial meta sampling (AMS) approach to improve MML-ASR. When sampling tasks in MML-ASR, AMS adaptively determines the task sampling probability for each source language. Specifically, for each source language, if the query loss is large, it means that its tasks are not well sampled to train ASR model in terms of its quantity and difficulty and thus should be sampled more frequently for extra learning. Inspired by this fact, we feed the historical task query loss of all source language domain into a network to learn a task sampling policy for adversarially increasing the current query loss of MML-ASR. Thus, the learnt task sampling policy can master the learning situation of each language and thus predicts good task sampling probability for each language for more effective learning. Finally, experiment results on two multilingual datasets show significant performance improvement when applying our AMS on MML-ASR, and also demonstrate the applicability of AMS to other low-resource speech tasks and transfer learning ASR approaches.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا