Do you want to publish a course? Click here

A systematic study of radiative torque grain alignment in the diffuse interstellar medium

114   0   0.0 ( 0 )
 Added by Stefan Reissl
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Context. Planck observations demonstrated that the grain alignment efficiency is almost constant in the diffuse ISM. Aims. We test if the Radiative Torque (RAT) theory is compatible with observational constraints on grain alignment. Methods. We combine a numerical simulation with the radiative transfer code POLARIS that incorporates a physical dust model and the detailed grain alignment physics of RATs. A dust model is designed to reproduce the spectral dependence of extinction of the ISM. From a RAMSES simulation of interstellar turbulence, we extract a cube representative of the diffuse ISM. We post-process the cube with POLARIS to get the grain temperature and RATs to simulate synthetic dust polarization maps. Results. In our simulation the grain alignment efficiency is correlated with gas pressure, but not with the RAT intensity. Because of the low dust extinction, the magnitude of RATs varies little, decreasing only for high column densities $N_H$. Comparing our maps with a uniform alignment efficiency, we find no systematic difference. The dependence of polarization fraction $p$ with $N_H$ or polarization dispersion $S$ is similar. The drop of RATs in dense regions barely affects the polarization pattern, the signal being dominated by the LOS and magnetic field geometry. If a star is inserted, the polarization increases, with no specific pattern around the star. The angle-dependence of RATs is not observed in the maps, and is weak using a uniform magnetic field. Conclusions. RATs are compatible with Planck data for the diffuse ISM such that both uniform alignment and RAT alignment lead to similar observations. To further test the predictions of RATs where an important drop of grain alignment is expected, polarization observations of dense regions must be confronted to numerical simulations sampling high column densities through dense clouds, with enough statistics.



rate research

Read More

Grain growth by accretion of gas-phase metals is a common assumption in models of dust evolution, but in dense gas, where the timescale is short enough for accretion to be effective, material is accreted in the form of ice mantles rather than adding to the refractory grain mass. It has been suggested that negatively-charged small grains in the diffuse interstellar medium (ISM) can accrete efficiently due to the Coulomb attraction of positively-charged ions, avoiding this issue. We show that this inevitably results in the growth of the small-grain radii until they become positively charged, at which point further growth is effectively halted. The resulting gas-phase depletions under diffuse ISM conditions are significantly overestimated when a constant grain size distribution is assumed. While observed depletions can be reproduced by changing the initial size distribution or assuming highly efficient grain shattering, both options result in unrealistic levels of far-ultraviolet extinction. We suggest that the observed elemental depletions in the diffuse ISM are better explained by higher initial depletions, combined with inefficient dust destruction by supernovae at moderate ($n_{rm H} sim 30 {rm , cm^{-3}}$) densities, rather than by higher accretion efficiences.
Interstellar grain alignment studies are currently experiencing a renaissance due to the development of a new quantitative theory based on Radiative Alignment Torques (RAT). One of the distinguishing predictions of this theory is a dependence of the grain alignment efficiency on the relative angle ($Psi$) between the magnetic field and the anisotropy direction of the radiation field. In an earlier study we found observational evidence for such an effect from observations of the polarization around the star HD 97300 in the Chamaeleon I cloud. However, due to the large uncertainties in the measured visual extinctions, the result was uncertain. By acquiring explicit spectral classification of the polarization targets, we have sought to perform a more precise reanalysis of the existing polarimetry data. We have obtained new spectral types for the stars in our for our polarization sample, which we combine with photometric data from the literature to derive accurate visual extinctions for our sample of background field stars. This allows a high accuracy test of the grain alignment efficiency as a function of $Psi$. We confirm and improve the measured accuracy of the variability of the grain alignment efficiency with $Psi$, seen in the earlier study. We note that the grain temperature (heating) also shows a dependence on $Psi$ which we interpret as a natural effect of the projection of the grain surface to the illuminating radiation source. This dependence also allows us to derive an estimate of the fraction of aligned grains in the cloud.
Using visible, radio, microwave, and sub-mm data, we study several lines of sight toward stars generally closer than 1 kpc on a component-by-component basis. We derive the component structure seen in absorption at visible wavelengths from Ca II, Ca I, K I, CH, CH$^{+}!,$ and CN and compare it to emission from H I, CO and its isotopologues, and C$^{+}$ from the GOT C+ survey. The correspondence between components in emission and absorption help create a more unified picture of diffuse atomic and molecular gas in the interstellar medium. We also discuss how these tracers are related to the CO-dark H$_{2}$ gas probed by C$^{+}$ emission and discuss the kinematic connections among the species observed.
178 - B.-G. Andersson 2012
Interstellar polarization in the optical/infrared has long been known to be due to asymmetrical dust grains aligned with the magnetic field and can potentially provide a resource effective way to probe both the topology and strength of the magnetic field. However, to do so with confidence, the physics and variability of the alignment mechanisms must be quantitatively understood. The last 15 years has seen major advancements in both the theoretical and observational understanding of this problem. I here review the current state of the observational constraints on the grain alignment physics. While none of the three classes of proposed grain alignment theories: mechanical, paramagnetic relaxation and radiative alignment torque, can be viewed as having been empirically confirmed, the first two have failed some critical observational tests, whereas the latter has recently been given specific observational support and must now be viewed as the leading candidate.
Polarization carries information about the magnetic fields in interstellar clouds. The observations of polarized dust emission are used to study the role of magnetic fields in the evolution of molecular clouds and the initial phases of star-formation. We study the grain alignment with realistic simulations, assuming the radiative torques to be the main mechanism that spins the grains up. The aim is to study the efficiency of the grain alignment as a function of cloud position and to study the observable consequences of these spatial variations. Our results are based on the analysis of model clouds derived from MHD simulations. The continuum radiative transfer problem is solved with Monte Carlo methods to estimate the 3D distribution of dust emission and the radiation field strength affecting the grain alignment. We also examine the effect of grain growth in cores. We are able to reproduce the results of Cho & Lazarian using their assumptions. However, the anisotropy factor even in the 1D case is lower than their assumption of $gamma = 0.7$, and thus we get less efficient radiative torques. Compared with our previous paper, the polarization degree vs. intensity relation is steeper because of less efficient grain alignment within dense cores. Without grain growth, the magnetic field of the cores is poorly recovered above a few $A_{rm V}$. If grain size is doubled in the cores, the polarization of dust emission can trace the magnetic field lines possibly up to $A_{rm V} sim 10$ magnitudes. However, many of the prestellar cores may be too young for grain coagulation to play a major role. The inclusion of direction dependent radiative torque efficiency weakens the alignment. Even with doubled grain size, we would not expect to probe the magnetic field past a few magnitudes in $A_{rm V}$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا