New Constraints on Millicharged Particles from Cosmic-ray Production


Abstract in English

We study the production of exotic millicharged particles (MCPs) from cosmic ray-atmosphere collisions which constitutes a permanent MCP production source for all terrestrial experiments Our calculation of the MCP flux can be used to reinterpret existing limits from experiments such as MACRO and Majorana on an ambient flux of ionizing particles. Large-scale underground neutrino detectors are particularly favorable targets for the resulting MCPs. Using available data from the Super-K experiment, we set new limits on MCPs, which are the best in sensitivity reach for the mass range $0.1 lesssim m_{chi} lesssim 0.5$ GeV, and which are competitive with accelerator-based searches for masses up to 1.5 GeV. Applying these constraints to models where a sub-dominant component of dark matter (DM) is fractionally charged allows us to probe parts of the parameter space that are challenging for conventional direct-detection DM experiments, independently of any assumptions about the DM abundance. These results can be further improved with the next generation of large-scale neutrino detectors.

Download