Random volumes in d-dimensional polytopes


Abstract in English

Suppose we choose $N$ points uniformly randomly from a convex body in $d$ dimensions. How large must $N$ be, asymptotically with respect to $d$, so that the convex hull of the points is nearly as large as the convex body itself? It was shown by Dyer-Furedi-McDiarmid that exponentially many samples suffice when the convex body is the hypercube, and by Pivovarov that the Euclidean ball demands roughly $d^{d/2}$ samples. We show that when the convex body is the simplex, exponentially many samples suffice; this then implies the same result for any convex simplicial polytope with at most exponentially many faces.

Download