Do you want to publish a course? Click here

Can we have it all? On the Trade-off between Spatial and Adversarial Robustness of Neural Networks

69   0   0.0 ( 0 )
 Added by Sandesh Kamath K
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

(Non-)robustness of neural networks to small, adversarial pixel-wise perturbations, and as more recently shown, to even random spatial transformations (e.g., translations, rotations) entreats both theoretical and empirical understanding. Spatial robustness to random translations and rotations is commonly attained via equivariant models (e.g., StdCNNs, GCNNs) and training augmentation, whereas adversarial robustness is typically achieved by adversarial training. In this paper, we prove a quantitative trade-off between spatial and adversarial robustness in a simple statistical setting. We complement this empirically by showing that: (a) as the spatial robustness of equivariant models improves by training augmentation with progressively larger transformations, their adversarial robustness worsens progressively, and (b) as the state-of-the-art robust models are adversarially trained with progressively larger pixel-wise perturbations, their spatial robustness drops progressively. Towards achieving pareto-optimality in this trade-off, we propose a method based on curriculum learning that trains gradually on more difficult perturbations (both spatial and adversarial) to improve spatial and adversarial robustness simultaneously.



rate research

Read More

We identify a trade-off between robustness and accuracy that serves as a guiding principle in the design of defenses against adversarial examples. Although this problem has been widely studied empirically, much remains unknown concerning the theory underlying this trade-off. In this work, we decompose the prediction error for adversarial examples (robust error) as the sum of the natural (classification) error and boundary error, and provide a differentiable upper bound using the theory of classification-calibrated loss, which is shown to be the tightest possible upper bound uniform over all probability distributions and measurable predictors. Inspired by our theoretical analysis, we also design a new defense method, TRADES, to trade adversarial robustness off against accuracy. Our proposed algorithm performs well experimentally in real-world datasets. The methodology is the foundation of our entry to the NeurIPS 2018 Adversarial Vision Challenge in which we won the 1st place out of ~2,000 submissions, surpassing the runner-up approach by $11.41%$ in terms of mean $ell_2$ perturbation distance.
Despite achieving remarkable success in various domains, recent studies have uncovered the vulnerability of deep neural networks to adversarial perturbations, creating concerns on model generalizability and new threats such as prediction-evasive misclassification or stealthy reprogramming. Among different defense proposals, stochastic network defenses such as random neuron activation pruning or random perturbation to layer inputs are shown to be promising for attack mitigation. However, one critical drawback of current defenses is that the robustness enhancement is at the cost of noticeable performance degradation on legitimate data, e.g., large drop in test accuracy. This paper is motivated by pursuing for a better trade-off between adversarial robustness and test accuracy for stochastic network defenses. We propose Defense Efficiency Score (DES), a comprehensive metric that measures the gain in unsuccessful attack attempts at the cost of drop in test accuracy of any defense. To achieve a better DES, we propose hierarchical random switching (HRS), which protects neural networks through a novel randomization scheme. A HRS-protected model contains several blocks of randomly switching channels to prevent adversaries from exploiting fixed model structures and parameters for their malicious purposes. Extensive experiments show that HRS is superior in defending against state-of-the-art white-box and adaptive adversarial misclassification attacks. We also demonstrate the effectiveness of HRS in defending adversarial reprogramming, which is the first defense against adversarial programs. Moreover, in most settings the average DES of HRS is at least 5X higher than current stochastic network defenses, validating its significantly improved robustness-accuracy trade-off.
We provide a general framework for characterizing the trade-off between accuracy and robustness in supervised learning. We propose a method and define quantities to characterize the trade-off between accuracy and robustness for a given architecture, and provide theoretical insight into the trade-off. Specifically we introduce a simple trade-off curve, define and study an influence function that captures the sensitivity, under adversarial attack, of the optima of a given loss function. We further show how adversarial training regularizes the parameters in an over-parameterized linear model, recovering the LASSO and ridge regression as special cases, which also allows us to theoretically analyze the behavior of the trade-off curve. In experiments, we demonstrate the corresponding trade-off curves of neural networks and how they vary with respect to factors such as number of layers, neurons, and across different network structures. Such information provides a useful guideline to architecture selection.
221 - Tao Bai , Jinqi Luo , Jun Zhao 2020
Adversarial examples are inevitable on the road of pervasive applications of deep neural networks (DNN). Imperceptible perturbations applied on natural samples can lead DNN-based classifiers to output wrong prediction with fair confidence score. It is increasingly important to obtain models with high robustness that are resistant to adversarial examples. In this paper, we survey recent advances in how to understand such intriguing property, i.e. adversarial robustness, from different perspectives. We give preliminary definitions on what adversarial attacks and robustness are. After that, we study frequently-used benchmarks and mention theoretically-proved bounds for adversarial robustness. We then provide an overview on analyzing correlations among adversarial robustness and other critical indicators of DNN models. Lastly, we introduce recent arguments on potential costs of adversarial training which have attracted wide attention from the research community.
We demonstrate that the choice of optimizer, neural network architecture, and regularizer significantly affect the adversarial robustness of linear neural networks, providing guarantees without the need for adversarial training. To this end, we revisit a known result linking maximally robust classifiers and minimum norm solutions, and combine it with recent results on the implicit bias of optimizers. First, we show that, under certain conditions, it is possible to achieve both perfect standard accuracy and a certain degree of robustness, simply by training an overparametrized model using the implicit bias of the optimization. In that regime, there is a direct relationship between the type of the optimizer and the attack to which the model is robust. To the best of our knowledge, this work is the first to study the impact of optimization methods such as sign gradient descent and proximal methods on adversarial robustness. Second, we characterize the robustness of linear convolutional models, showing that they resist attacks subject to a constraint on the Fourier-$ell_infty$ norm. To illustrate these findings we design a novel Fourier-$ell_infty$ attack that finds adversarial examples with controllable frequencies. We evaluate Fourier-$ell_infty$ robustness of adversarially-trained deep CIFAR-10 models from the standard RobustBench benchmark and visualize adversarial perturbations.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا