Do you want to publish a course? Click here

E2 distribution and statistical regularity in polygonal planar tessellations

204   0   0.0 ( 0 )
 Added by Hao Lin Dr
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

From solar supergranulation to salt flat in Bolivia, from veins on leaves to cells on Drosophila wing discs, polygon-based networks exhibit great complexities, yet similarities persist and statistical distributions can be remarkably consistent. Based on analysis of 99 polygonal tessellations of a wide variety of physical origins, this work demonstrates the ubiquity of an exponential distribution in the squared norm of the deformation tensor, $E^{2}$, which directly leads to the ubiquitous presence of Gamma distributions in polygon aspect ratio. The $E^{2}$ distribution in turn arises as a $chi^{2}$-distribution, and an analytical framework is developed to compute its statistics. $E^{2}$ is closely related to many energy forms, and its Boltzmann-like feature allows the definition of a pseudo-temperature. Together with normality in other key variables such as vertex displacement, this work reveals regularities universally present in all systems alike



rate research

Read More

We investigate a particular phase transition between two different tunneling regimes, direct and injection (Fowler-Nordheim), experimentally observed in the current-voltage characteristics of the light receptor bacteriorhodopsin (bR). Here, the sharp increase of the current above about 3 V is theoretically interpreted as the cross-over between the direct and injection sequential-tunneling regimes. Theory also predicts a very special behaviour for the associated current fluctuations around steady state. We find the remarkable result that in a large range of bias around the transition between the two tunneling regimes, the probability density functions can be traced back to the generalization of the Gumbel distribution. This non-Gaussian distribution is the universal standard to describe fluctuations under extreme conditions.
We construct a minimalist model of RNA secondary-structure formation and use it to study the mapping from sequence to structure. There are strong, qualitative differences between two-letter and four or six-letter alphabets. With only two kinds of bases, there are many alternate folding configurations, yielding thermodynamically stable ground-states only for a small set of structures of high designability, i.e., total number of associated sequences. In contrast, sequences made from four bases, as found in nature, or six bases have far fewer competing folding configurations, resulting in a much greater average stability of the ground state.
Noethers calculus of invariant variations yields exact identities from functional symmetries. The standard application to an action integral allows to identify conservation laws. Here we rather consider generating functionals, such as the free energy and the power functional, for equilibrium and driven many-body systems. Translational and rotational symmetry operations yield mechanical laws. These global identities express vanishing of total internal and total external forces and torques. We show that functional differentiation then leads to hierarchies of local sum rules that interrelate density correlators as well as static and time direct correlation functions, including memory. For anisotropic particles, orbital and spin motion become systematically coupled. The theory allows us to shed new light on the spatio-temporal coupling of correlations in complex systems. As applications we consider active Brownian particles, where the theory clarifies the role of interfacial forces in motility-induced phase separation. For active sedimentation, the center-of-mass motion is constrained by an internal Noether sum rule.
Run-and-tumble dynamics is a wide-spread mechanism of swimming bacteria. The accumulation of run-and-tumble microswimmers near impermeable surfaces is studied theoretically and numerically in the low-density limit in two and three spatial dimensions. Both uni-modal and exponential distributions of the run lengths are considered. Constant run lengths lead to {peaks and depletions regions} in the density distribution of particles near the surface, in contrast to {exponentially-distributed run lengths}. Finally, we present a universal accumulation law for large channel widths, which applies not only to run-and-tumble swimmers, but also to many other kinds of self-propelled particles.
We consider an active Brownian particle in a $d$-dimensional harmonic trap, in the presence of translational diffusion. While the Fokker-Planck equation can not in general be solved to obtain a closed form solution of the joint distribution of positions and orientations, as we show, it can be utilized to evaluate the exact time dependence of all moments, using a Laplace transform approach. We present explicit calculation of several such moments at arbitrary times and their evolution to the steady state. In particular we compute the kurtosis of the displacement, a quantity which clearly shows the difference of the active steady state properties from the equilibrium Gaussian form. We find that it increases with activity to asymptotic saturation, but varies non-monotonically with the trap-stiffness, thereby capturing a recently observed active- to- passive re-entrant behavior.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا