Do you want to publish a course? Click here

Search for $bbbar{b}bar{b}$ tetraquark decays in 4 muons, $B^{+} B^{-}$, $B^0 bar{B}^0$ and $B_s^0 bar{B}_s^0$ channels at LHC

99   0   0.0 ( 0 )
 Added by Elena Santopinto
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We perform a quantitative analysis of the $bbbar{b}bar{b}$ tetraquark decays into hidden- and open-bottom mesons and calculate, for the first time, the $bbbar{b}bar{b}$ tetraquark total decay width. On the basis of our results, we propose the $bbbar{b}bar{b} to B^{+} B^{-} (B^0 bar{B}^0) (B_s^0 bar{B}_s^0) to l^{+} l^{-}+text{X}$ decays as the most suitable channels to observe the $bbbar{b}bar{b}$ tetraquark states, since the calculated two-lepton cross section upper limit, $simeq 39 $ fb, is so large as to be potentially detectable with the 2018 LHCb sensitivity, paving the way to the observation of the $bbbar{b}bar{b}$ tetraquark in the future LHCb upgrade. The $4mu$ signal for the ground state, $J^{PC}=0^{++}$, is likely to be too small even for the upgraded LHCb, but it may not be hopeless for the $J^{PC}=2^{++}$ fully-bottom state.

rate research

Read More

172 - Gaber Faisel 2013
We study the decay modes $bar{B}_sto phi pi^0$ and $bar{B}_sto phi rho^0$ within the frameworks of two-Higgs doublet models type-II and typ-III. We adopt in our study Soft Collinear Effective Theory as a framework for the calculation of the amplitudes. We derive the contributions of the charged Higgs mediation to the weak effective Hamiltonian governing the decay processes in both models. Moreover we analyze the effect of the charged Higgs mediation on the Wilson coefficients of the electrowek penguins and on the branching ratios of $bar{B}_sto phi pi^0$ and $bar{B}_sto phi rho^0$ decays. We show that wthin two-Higgs doublet models type-II and type-III the Wilson coefficients corresponding to the electroweak penguins can be enhanced due to the contributions from the charged Higgs mediation leading into enhancement in the branching ratios of $ bar{B}_sto phi pi^0$ and $bar{B}_sto phi rho^0 $ decays. We find that, within two-Higgs doublet models type-II, the enhancement in the branching ratio of $bar{B}_sto phi pi^0$ can not exceed $18%$ with respect to the SM predictions. For the branching ratio of $bar{B}_sto phi rho^0$, we find that the charged Higgs contribution in this case is small where the branching ratio of $bar{B}_sto phi rho^0$ can be enhanced or reduced by about $4% $ with respect to the SM predictions. For the case of the two-Higgs doublet models type-III we show that the branching ratio of $bar{B}_sto phi pi^0$ can be enhanced by about a factor $2$ of its value within two-Higgs doublet models type-II. However no sizable enhancement with respect to the SM predictions can be obtained for both $bar{B}_sto phi pi^0$ and $bar{B}_sto phi rho^0$ decays.
We study the decay processes of $bar{B}^0 to J/psi bar{K}^{*0} K^0$ and $bar{B}^0 to J/psi f_1(1285)$ to analyse the $f_1(1285)$ resonance. By the calculation within chiral unitary approach where $f_1(1285)$ resonance is dynamically generated from the $K^*bar{K}-c.c.$ interaction, we find that the $bar{K}^{*0} K^0$ invariant mass distribution has a clear broad peak. Such broad peak has been understood as the signal of the $f_1(1285)$. Finally, we obtain a theoretical result $R_t=Gamma_{bar{B}^0 to J/psi bar{K}^{*0} K^0}/Gamma_{bar{B}^0 to J/psi f_1(1285)}$ which is expected to be compared with the experimental data.
167 - Jakub Kandra , Tadeas Bilka 2019
The Belle II experiment at the SuperKEKB energy-asymmetric $e^+ e^-$ collider is a substantial upgrade of the B factory facility at the Japanese KEK laboratory. The design luminosity of the machine is $8times 10^{35}$ cm$^{-2}$s$^{-1}$ and the Belle II experiment aims to record 50 ab$^{-1}$ of data, a factor of 50 more than its predecessor. From February to July 2018, the machine has completed a commissioning run, achieved a peak luminosity of $5.5times 10^{33}$ cm$^{-2}$s$^{-1}$, and Belle II has recorded a data sample of about 0.5 fb$^{-1}$. Main operation of SuperKEKB has started in March 2019. We use this dataset to characterize the performance of the detector regarding the tracking of charged particles, the reconstruction of known resonances, and the capability of identifying displaced decay vertices. To assess the B Physics capabilities of the experiment, one of the first benchmarks consists in the measurement of the lifetime of B mesons and of the $B^0-bar B^0$ mixing frequency. We present the first results, based on samples of B mesons that decay to hadronic and semileptonic final states.
The first observation of the decay $bar{B}^0_s to D^0 K^{*0}$ using $pp$ data collected by the LHCb detector at a centre-of-mass energy of 7 TeV, corresponding to an integrated luminosity of 36 pb$^{-1}$, is reported. A signal of $34.4 pm 6.8$ events is obtained and the absence of signal is rejected with a statistical significance of more than nine standard deviations. The $bar{B}^0_s to D^0 K^{*0}$ branching fraction is measured relative to that of $bar{B}^0 to D^0 rho^0$: $frac{{cal B}(bar{B}^0_s to D^0 K^{*0})}{{cal B}(bar{B}^0 to D^0 rho^0)} = 1.48 pm 0.34 pm 0.15 pm 0.12$, where the first uncertainty is statistical, the second systematic and the third is due to the uncertainty on the ratio of the $B^0$ and $B^0_s$ hadronisation fractions.
The $B^0$--$bar B^0$ oscillation frequency $Delta m_d$ is measured by the LHCb experiment using a dataset corresponding to an integrated luminosity of $1.0,$fb$^{-1}$ of proton-proton collisions at $sqrt{s} = 7,$TeV, and is found to be $Delta m_d = 0.5156 pm 0.0051,($stat.$) pm 0.0033,($syst.$),$ps$^{-1}$. The measurement is based on results from analyses of the decays $B^0 to D^- pi^+$ ($D^- to K^+ pi^- pi^-$) and $B^0 to J/ psi K^{*0}$ ($ J/ psi to mu^+ mu^-$, $K^{*0} to K^+ pi^-$) and their charge conjugated modes.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا