Do you want to publish a course? Click here

An X-ray activity cycle on the young solar-like star $epsilon rm Eridani$

83   0   0.0 ( 0 )
 Added by Martina Coffaro
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

In 2015 we started the XMM-Newton monitoring of the young solar-like star Epsilon Eridani (440 Myr), one of the youngest solar-like stars with a known chromospheric CaII cycle. By analyzing the most recent Mount Wilson S-index CaII data of this star, we found that the chromospheric cycle lasts 2.92 +/- 0.02 yr, in agreement with past results. From the long-term X-ray lightcurve, we find clear and systematic X-ray variability of our target, consistent with the chromospheric CaII cycle. The average X-ray luminosity results to be 2 x 10^28 erg/s, with an amplitude that is only a factor 2 throughout the cycle. We apply a new method to describe the evolution of the coronal emission measure distribution of Epsilon Eridani in terms of solar magnetic structures: active regions, cores of active regions and flares covering the stellar surface at varying filling fractions. Combinations of these magnetic structures can describe the observed X-ray emission measure of Epsilon Eridani only if the solar flare emission measure distribution is restricted to events in the decay phase. The interpretation is that flares in the corona of Epsilon Eridani last longer than their solar counterparts. We ascribe this to the lower metallicity of Epsilon Eridani. Our analysis revealed also that the X-ray cycle of Epsilon Eridani is strongly dominated by cores of active regions. The coverage fraction of cores throughout the cycle changes by the same factor as the X-ray luminosity. The maxima of the cycle are characterized by a high percentage of covering fraction of the flares, consistent with the fact that flaring events are seen in the corresponding short-term X-ray lightcurves predominately at the cycle maxima. The high X-ray emission throughout the cycle of Epsilon Eridani is thus explained by the high percentage of magnetic structures on its surface.



rate research

Read More

During the last decade, the relation between activity cycle periods with stellar parameters has received special attention. The construction of reliable registries of activity reveals that solar type stars exhibit activity cycles with periods from few years to decades and, in same cases, long and short activity cycles coexist suggesting that two dynamos could operate in these stars. In particular, Epsilon Eridani is an active young K2V star (0.8 Gyr), which exhibits a short and long-term chromospheric cycles of near 3 and 13-yr periods. Additionally, between 1985 and 1992, the star went through a broad activity minimum, similar to the solar Maunder Minimum-state. Motivated by these results, we found in Epsilon Eridani a great opportunity to test the dynamo theory. Based on the model developed in Sraibman & Minotti (2019), in this work we built a non linear axisymmetric dynamo for Epsilon Eridani. The time series of the simulated magnetic field components near the surface integrated in all the stellar disc exhibits both the long and short-activity cycles with periods similar to the ones detected from observations and also time intervals of low activity which could be associated to the broad Minimun. The short activity cycle associated to the magnetic reversal could be explained by the differential rotation, while the long cycle is associated to the meridional mass flows induced by the Lorentz force. In this way, we show that a single non-linear dynamo model derived from first principles with accurate stellar parameters could reproduce coexisting activity cycles.
69 - Stefano Sello 2019
Solar activity forecasting is an important topic for numerous scientific and technological areas, such as space mission operations, electric power transmission lines, power transformation stations and earth geophysical and climatic impact. Nevertheless, the well-known difficulty is how to accurately predict, on the basis of various recorded solar activity indices, the complete evolution of future solar cycles, due to highly complex dynamical and stochastic processes involved, mainly related to interaction of different components of internal magnetic fields. There are two main distinct classes of solar cycle prediction methods: the precursor-like ones and the mathematical-numerical ones. The main characteristic of precursor techniques, both purely solar and geomagnetic, is their physical basis. Conversely, the non-precursor methods use different mathematical and/or numerical properties of the known temporal evolution of solar activity indices to extract useful information for predicting future activity. For current solar cycle #24 we obtained fairly good statistical performances from both precursor and purely numerical methods, such as the so-called solar precursor and nonlinear ones. To further check the performances of these prediction techniques, we compared the early predictions for the next solar cycle #25. Preliminary results support some coherence of the prediction methods considered and confirm the current trend of a relatively low solar activity.
A recently observed bump in the cosmic ray (CR) spectrum from 0.3--30 TV is likely caused by a stellar bow shock that reaccelerates emph{preexisting} CRs, which further propagate to the Sun along the magnetic field lines. Along their way, these particles generate an Iroshnikov-Kraichnan (I-K) turbulence that controls their propagation and sustains the bump. {it Ad hoc} fitting of the bump shape requires six adjustable parameters. Our model requires none, merely depending on emph{three physical unknowns that we constrain using the fit.} These are the shock Mach number, $M$, its size, $l_{perp}$, and the distance to it, $zeta_{text{obs}}$. Altogether, they define the bump rigidity $R_{0}$. With $M$$approx$1.5--1.6 and $R_{0}$$approx$4.4 TV, the model fits the data with $approx$$0.08%$ accuracy. The fit critically requires the I-K spectrum predicted by the model and rules out the alternatives. These fits attributes make an accidental agreement highly unlikely. In turn, $R_{0}$ and $M$ derived from the fit impose the distance-size %($zeta_{{rm obs}}$$-$$l_{perp}$) relation on the shock: $zeta_{{rm obs}}$(pc)$sim$$10^{2}sqrt{l_{perp}(text{pc})}$. For sufficiently large bow shocks, $l_{perp}$$=$$10^{-3}$$-$$10^{-2}$ pc, we find the distance of $zeta_{{rm obs}}$$=$3--10 pc. Three promising stars in this range are: Scholzs Star at 6.8 pc, Epsilon Indi at 3.6 pc, and Epsilon Eridani at 3.2 pc. Based on their current positions and velocities, we propose that Epsilon Indi and Epsilon Eridani can produce the observed spectral bump. Moreover, Epsilon Eridanis position is only $sim$$6.7^{circ}$ off of the magnetic field direction in the solar neighborhood, which also changes the CR arrival direction distribution. Given the proximity of these stars, the bump appearance may change in a relatively short time.
We present simultaneous ground-based radial velocity (RV) measurements and space-based photometric measurements of the young and active K dwarf Epsilon Eridani. These measurements provide a data set for exploring methods of identifying and ultimately distinguishing stellar photospheric velocities from Keplerian motion. We compare three methods we have used in exploring this data set: Dalmatian, an MCMC spot modeling code that fits photometric and RV measurements simultaneously; the FF$$ method, which uses photometric measurements to predict the stellar activity signal in simultaneous RV measurements; and H$alpha$ analysis. We show that our H$alpha$ measurements are strongly correlated with photometry from the Microvariability and Oscillations of STars (MOST) instrument, which led to a promising new method based solely on the spectroscopic observations. This new method, which we refer to as the HH$$ method, uses H$alpha$ measurements as input into the FF$$ model. While the Dalmatian spot modeling analysis and the FF$$ method with MOST space-based photometry are currently more robust, the HH$$ method only makes use of one of the thousands of stellar lines in the visible spectrum. By leveraging additional spectral activity indicators, we believe the HH$$ method may prove quite useful in disentangling stellar signals.
101 - J. S. Greaves 1998
Dust emission around the nearby star epsilon Eridani has been imaged using a new submillimetre camera (SCUBA at the JCMT). At 850 microns wavelength a ring of dust is seen, peaking at 60 AU from the star and with much lower emission inside 30 AU. The mass of the ring is at least 0.01 Earth masses in dust, while an upper limit of 0.4 Earth masses in molecular gas is imposed by CO observations. The total mass is comparable to the estimated amount of material, 0.04-0.3 Earth masses, in comets orbiting the Solar System. The most probable origin of the the ring structure is that it is a young analogue to the Kuiper Belt in our Solar System, and that the central region has been partially cleared by the formation of grains into planetesimals. Dust clearing around epsilon Eri is seen within the radius of Neptunes orbit, and the peak emission at 35-75 AU lies within the estimated Kuiper Belt zone of 30-100 AU radius. epsilon Eri is a main-sequence star of type K2V (0.8 Solar masses) with an estimated age of 0.5-1.0 Gyr, so this interpretation is consistent with the early history of the Solar System where heavy bombardment occurred up to approximately 0.6 Gyr. An unexpected discovery is substructure within the ring, and these asymmetries could be due to perturbations by planets.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا