Do you want to publish a course? Click here

LATIS: The Ly$alpha$ Tomography IMACS Survey

93   0   0.0 ( 0 )
 Added by Andrew Newman
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We introduce LATIS, the Ly$alpha$ Tomography IMACS Survey, a spectroscopic survey at Magellan designed to map the z=2.2-2.8 intergalactic medium (IGM) in three dimensions by observing the Ly$alpha$ forest in the spectra of galaxies and QSOs. Within an area of 1.7 deg${}^2$, we will observe approximately half of $gtrsim L^*$ galaxies at z=2.2-3.2 for typically 12 hours, providing a dense network of sightlines piercing the IGM with an average transverse separation of 2.5 $h^{-1}$ comoving Mpc (1 physical Mpc). At these scales, the opacity of the IGM is expected to be closely related to the dark matter density, and LATIS will therefore map the density field in the $z sim 2.5$ universe at $sim$Mpc resolution over the largest volume to date. Ultimately LATIS will produce approximately 3800 spectra of z=2.2-3.2 galaxies that probe the IGM within a volume of $4 times 10^6 h^{-3}$ Mpc${}^3$, large enough to contain a representative sample of structures from protoclusters to large voids. Observations are already complete over one-third of the survey area. In this paper, we describe the survey design and execution. We present the largest IGM tomographic maps at comparable resolution yet made. We show that the recovered matter overdensities are broadly consistent with cosmological expectations based on realistic mock surveys, that they correspond to galaxy overdensities, and that we can recover structures identified using other tracers. LATIS is conducted in Canada-France-Hawaii Telescope Legacy Survey fields, including COSMOS. Coupling the LATIS tomographic maps with the rich data sets collected in these fields will enable novel studies of environment-dependent galaxy evolution and the galaxy-IGM connection at cosmic noon.



rate research

Read More

Forming a three dimensional view of the Universe is a long-standing goal of astronomical observations, and one that becomes increasingly difficult at high redshift. In this paper we discuss how tomography of the intergalactic medium (IGM) at $zsimeq 2.5$ can be used to estimate the redshifts of massive galaxies in a large volume of the Universe based on spectra of galaxies in their background. Our method is based on the fact that hierarchical structure formation leads to a strong dependence of the halo density on large-scale environment. A map of the latter can thus be used to refine our knowledge of the redshifts of halos and the galaxies and AGN which they host. We show that tomographic maps of the IGM at a resolution of $2.5,h^{-1}$Mpc can determine the redshifts of more than 90 per cent of massive galaxies with redshift uncertainty $Delta z/(1+z)=0.01$. Higher resolution maps allow such redshift estimation for lower mass galaxies and halos.
Detections of the cross correlation signal between the 21cm signal during reionization and high-redshift Lyman Alpha emitters (LAEs) are subject to observational uncertainties which mainly include systematics associated with radio interferometers and LAE selection. These uncertainties can be reduced by increasing the survey volume and/or the survey luminosity limit, i.e. the faintest detectable Lyman Alpha (Ly$alpha$) luminosity. We use our model of high-redshift LAEs and the underlying reionization state to compute the uncertainties of the 21cm-LAE cross correlation function at $zsimeq6.6$ for observations with SKA1-Low and LAE surveys with $Delta z=0.1$ for three different values of the average IGM ionization state ($langlechi_mathrm{HI}rangle$=0.1, 0.25, 0.5). At $zsimeq6.6$, we find SILVERRUSH type surveys, with a field of view of 21 deg$^2$ and survey luminosity limits of $L_alphageq7.9times10^{42}$erg~s$^{-1}$, to be optimal to distinguish between an inter-galactic medium (IGM) that is 50%, 25% and 10% neutral, while surveys with smaller fields of view and lower survey luminosity limits, such as the 5 and 10 deg$^2$ surveys with WFIRST, can only discriminate between a 50% and 10% neutral IGM.
In this work, we explore the application of intensity mapping to detect extended Ly$alpha$ emission from the IGM via cross-correlation of PAUS images with Ly$alpha$ forest data from eBOSS and DESI. Seven narrow-band (FWHM=13nm) PAUS filters have been considered, ranging from 455 to 515 nm in steps of 10 nm, which allows the observation of Ly$alpha$ emission in a range $2.7<z<3.3$. The cross-correlation is simulated first in an area of 100 deg$^2$ (PAUS projected coverage), and second in two hypothetical scenarios: a deeper PAUS (complete up to $i_{rm AB}<24$ instead of $i_{rm AB}<23$, observation time x6), and an extended PAUS coverage of 225 deg$^2$ (observation time x2.25). A hydrodynamic simulation of size 400 Mpc/h is used to simulate both extended Ly$alpha$ emission and absorption, while the foregrounds in PAUS images have been simulated using a lightcone mock catalogue. Using an optimistic estimation of uncorrelated PAUS noise, the total probability of a non-spurious detection is estimated to be 1.8% and 4.5% for PAUS-eBOSS and PAUS-DESI , from a run of 1000 simulated cross-correlations with different realisations of instrumental noise and quasar positions. The hypothetical PAUS scenarios increase this probability to 15.3% (deeper PAUS) and 9.0% (extended PAUS). With realistic correlated noise directly measured from PAUS images, these probabilities become negligible. Despite these negative results, some evidences suggest that this methodology may be more suitable to broad-band surveys.
We present the Arizona CDFS Environment Survey (ACES), a recently-completed spectroscopic redshift survey of the Chandra Deep Field South (CDFS) conducted using IMACS on the Magellan-Baade telescope. In total, the survey targeted 7277 unique sources down to a limiting magnitude of R = 24.1, yielding 5080 secure redshifts across the ~30 x 30 extended CDFS region. The ACES dataset delivers a significant increase to both the spatial coverage and the sampling density of the spectroscopic observations in the field. Combined with previously-published, spectroscopic redshifts, ACES now creates a highly-complete survey of the galaxy population at R < 23, enabling the local galaxy density (or environment) on relatively small scales (~1 Mpc) to be measured at z < 1 in one of the most heavily-studied and data-rich fields in the sky. Here, we describe the motivation, design, and implementation of the survey and present a preliminary redshift and environment catalog. In addition, we utilize the ACES spectroscopic redshift catalog to assess the quality of photometric redshifts from both the COMBO-17 and MUSYC imaging surveys of the CDFS.
A key obstacle to developing a satisfying theory of galaxy evolution is the difficulty in extending analytic descriptions of early structure formation into full nonlinearity, the regime in which galaxy growth occurs. Extant techniques, though powerful, are based on approximate numerical methods whose Monte Carlo-like nature hinders intuition building. Here, we develop a new solution to this problem and its empirical validation. We first derive closed-form analytic expectations for the evolution of fixed percentiles in the real-space cosmic density distribution, {it averaged over representative volumes observers can track cross-sectionally}. Using the Lagrangian forms of the fluid equations, we show that percentiles in $delta$---the density relative to the median---should grow as $delta(t)proptodelta_{0}^{alpha},t^{beta}$, where $alphaequiv2$ and $betaequiv2$ for Newtonian gravity at epochs after the overdensities transitioned to nonlinear growth. We then use 9.5 sq. deg. of Carnegie-Spitzer-IMACS Redshift Survey data to map {it galaxy} environmental densities over $0.2<z<1.5$ ($sim$7 Gyr) and infer $alpha=1.98pm0.04$ and $beta=2.01pm0.11$---consistent with our analytic prediction. These findings---enabled by swapping the Eulerian domain of most work on density growth for a Lagrangian approach to real-space volumetric averages---provide some of the strongest evidence that a lognormal distribution of early density fluctuations indeed decoupled from cosmic expansion to grow through gravitational accretion. They also comprise the first exact, analytic description of the nonlinear growth of structure extensible to (arbitrarily) low redshift. We hope these results open the door to new modeling of, and insight-building into, the galaxy growth and its diversity in cosmological contexts.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا