Do you want to publish a course? Click here

Efficient Quantum Circuit Decompositions via Intermediate Qudits

75   0   0.0 ( 0 )
 Added by Casey Duckering
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Many quantum algorithms make use of ancilla, additional qubits used to store temporary information during computation, to reduce the total execution time. Quantum computers will be resource-constrained for years to come so reducing ancilla requirements is crucial. In this work, we give a method to generate ancilla out of idle qubits by placing some in higher-value states, called qudits. We show how to take a circuit with many $O(n)$ ancilla and design an ancilla-free circuit with the same asymptotic depth. Using this, we give a circuit construction for an in-place adder and a constant adder both with $O(log n)$ depth using temporary qudits and no ancilla.



rate research

Read More

We present QEst, a procedure to systematically generate approximations for quantum circuits to reduce their CNOT gate count. Our approach employs circuit partitioning for scalability with procedures to 1) reduce circuit length using approximate synthesis, 2) improve fidelity by running circuits that represent key samples in the approximation space, and 3) reason about approximation upper bound. Our evaluation results indicate that our approach of dissimilar approximations provides close fidelity to the original circuit. Overall, the results indicate that QEst can reduce CNOT gate count by 30-80% on ideal systems and decrease the impact of noise on existing and near-future quantum systems.
We present some basic integer arithmetic quantum circuits, such as adders and multipliers-accumulators of various forms, as well as diagonal operators, which operate on multilevel qudits. The integers to be processed are represented in an alternative basis after they have been Fourier transformed. Several arithmetic circuits operating on Fourier transformed integers have appeared in the literature for two level qubits. Here we extend these techniques on multilevel qudits, as they may offer some advantages relative to qubits implementations. The arithmetic circuits presented can be used as basic building blocks for higher level algorithms such as quantum phase estimation, quantum simulation, quantum optimization etc., but they can also be used in the implementation of a quantum fractional Fourier transform as it is shown in a companion work presented separately.
Current quantum computer designs will not scale. To scale beyond small prototypes, quantum architectures will likely adopt a modular approach with clusters of tightly connected quantum bits and sparser connections between clusters. We exploit this clustering and the statically-known control flow of quantum programs to create tractable partitioning heuristics which map quantum circuits to modular physical machines one time slice at a time. Specifically, we create optimized mappings for each time slice, accounting for the cost to move data from the previous time slice and using a tunable lookahead scheme to reduce the cost to move to future time slices. We compare our approach to a traditional statically-mapped, owner-computes model. Our results show strict improvement over the static mapping baseline. We reduce the non-local communication overhead by 89.8% in the best case and by 60.9% on average. Our techniques, unlike many exact solver methods, are computationally tractable.
Quantum computing is of high interest because it promises to perform at least some kinds of computations much faster than classical computers. Arute et al. 2019 (informally, the Google Quantum Team) report the results of experiments that purport to demonstrate quantum supremacy -- the claim that the performance of some quantum computers is better than that of classical computers on some problems. Do these results close the debate over quantum supremacy? We argue that they do not. We provide an overview of the Google Quantum Teams experiments, then identify some open questions in the quest to demonstrate quantum supremacy.
Quantum circuit simulators have a long tradition of exploiting massive hardware parallelism. Most of the times, parallelism has been supported by special purpose libraries tailored specifically for the quantum circuits. Quantum circuit simulators are integral part of quantum software stacks, which are mostly written in Python. Our focus has been on ease of use, implementation and maintainability within the Python ecosystem. We report the performance gains we obtained by using CuPy, a general purpose library (linear algebra) developed specifically for CUDA-based GPUs, to simulate quantum circuits. For supremacy circuits the speedup is around 2x, and for quantum multipliers almost 22x compared to state-of-the-art C++-based simulators.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا