Do you want to publish a course? Click here

Adapting Plancks route to investigate the thermodynamics of the spin-half pyrochlore Heisenberg antiferromagnet

98   0   0.0 ( 0 )
 Added by Oleg Derzhko
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The spin-half pyrochlore Heisenberg antiferromagnet (PHAF) is one of the most challenging problems in the field of highly frustrated quantum magnetism. Stimulated by the seminal paper of M.~Planck [M.~Planck, Verhandl. Dtsch. phys. Ges. {bf 2}, 202-204 (1900)] we calculate thermodynamic properties of this model by interpolating between the low- and high-temperature behavior. For that we follow ideas developed in detail by B.~Bernu and G.~Misguich and use for the interpolation the entropy exploiting sum rules [the ``entropy method (EM)]. We complement the EM results for the specific heat, the entropy, and the susceptibility by corresponding results obtained by the finite-temperature Lanczos method (FTLM) for a finite lattice of $N=32$ sites as well as by the high-temperature expansion (HTE) data. We find that due to pronounced finite-size effects the FTLM data for $N=32$ are not representative for the infinite system below $T approx 0.7$. A similar restriction to $T gtrsim 0.7$ holds for the HTE designed for the infinite PHAF. By contrast, the EM provides reliable data for the whole temperature region for the infinite PHAF. We find evidence for a gapless spectrum leading to a power-law behavior of the specific heat at low $T$ and for a single maximum in $c(T)$ at $Tapprox 0.25$. For the susceptibility $chi(T)$ we find indications of a monotonous increase of $chi$ upon decreasing of $T$ reaching $chi_0 approx 0.1$ at $T=0$. Moreover, the EM allows to estimate the ground-state energy to $e_0approx -0.52$.



rate research

Read More

We use the rotation-invariant Greens function method (RGM) and the high-temperature expansion (HTE) to study the thermodynamic properties of the Heisenberg antiferromagnet on the pyrochlore lattice. We discuss the excitation spectra as well as various thermodynamic quantities, such as spin correlations, uniform susceptibility, specific heat and static and dynamical structure factors. For the ground state we present RGM data for arbitrary spin quantum numbers $S$. At finite temperatures we focus on the extreme quantum cases $S=1/2$ and $S=1$. We do not find indications for magnetic long-range order for any value of $S$. We discuss the width of the pinch point in the static structure factor in dependence on temperature and spin quantum number. We compare our data with experimental results for the pyrochlore compound NaCaNi$_2$F$_7$ ($S=1$). Thus, our results for the dynamical structure factor agree well with the experimentally observed features at 3 ldots 8~meV for NaCaNi$_2$F$_7$. We analyze the static structure factor ${S}_{bf q}$ to find regions of maximal ${S}_{bf q}$. The high-temperature series of the ${S}_{bf q}$ provide a fingerprint of weak {it order by disorder} selection of a collinear spin structure, where (classically) the total spin vanishes on each tetrahedron and neighboring tetrahedra are dephased by $pi$.
We use the rotation-invariant Greens function method (RGM) and the high-temperature expansion (HTE) to study the thermodynamic properties of the spin-$S$ Heisenberg ferromagnet on the pyrochlore lattice. We examine the excitation spectra as well as various thermodynamic quantities, such as the order parameter (magnetization), the uniform static susceptibility, the correlation length, the spin-spin correlations, and the specific heat, as well as the static and dynamic structure factors. We discuss the influence of the spin quantum number $S$ on the temperature dependence of these quantities. We compare our results for the pyrochlore ferromagnet with the corresponding ones for the simple-cubic lattice both having the same coordination number $z=6$. We find a significant suppression of magnetic ordering for the pyrochlore lattice due to its geometry with corner-sharing tetrahedra.
We use the example of the cuboctahedron, a highly frustrated molecule with 12 sites, to study the approach to the classical limit. We compute magnetic susceptibility, specific heat, and magnetic cooling rate at high magnetic fields and low temperatures for different spin quantum numbers s. Remarkably big deviations of these quantities from their classical counterparts are observed even for values of s which are usually considered to be almost classical.
The study of randomness in low-dimensional quantum antiferromagnets is at the forefront of research in the field of strongly correlated electron systems, yet there have been relatively few experimental model systems. Complementary neutron scattering and numerical experiments demonstrate that the spin-diluted Heisenberg antiferromagnet La2Cu(1-z)(Zn,Mg)zO4 is an excellent model material for square-lattice site percolation in the extreme quantum limit of spin one-half. Measurements of the ordered moment and spin correlations provide important quantitative information for tests of theories for this complex quantum-impurity problem.
We investigate the spin-1/2 Heisenberg model on a rectangular lattice, using the Gutzwiller projected variational wave function known as the staggered flux state. Using Monte Carlo techniques, the variational parameters and static spin-structure factor for different coupling anisotropies $gamma=J_y/J_x$ are calculated. We observe a gradual evolution of the ground state energy towards a value which is very close to the 1D estimate provided by the Bethe ansatz and a good agreement between the finite size scaling of the energies. The spin-spin correlation functions exhibit a power-law decay with varying exponents for different anisotropies. Though the lack of Neel order makes the staggered flux state energetically unfavorable in the symmetric case $gamma=1$, it appears to capture the essence of the system close to 1D. Hence we believe that the staggered flux state provides an interesting starting point to explore the crossover from quantum disordered chains to the Neel ordered 2D square lattices.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا