Do you want to publish a course? Click here

High redshift JWST predictions from IllustrisTNG: II. Galaxy line and continuum spectral indices and dust attenuation curves

79   0   0.0 ( 0 )
 Added by Xuejian Shen Mr.
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present predictions for high redshift ($z=2-10$) galaxy populations based on the IllustrisTNG simulation suite and a full Monte Carlo dust radiative transfer post-processing. Specifically, we discuss the ${rm H}_{alpha}$ and ${rm H}_{beta}$ + $[rm O ,III]$ luminosity functions up to $z=8$. The predicted ${rm H}_{beta}$ + $[rm O ,III]$ luminosity functions are consistent with present observations at $zlesssim 3$ with $lesssim 0.1,{rm dex}$ differences in luminosities. However, the predicted ${rm H}_{alpha}$ luminosity function is $sim 0.3,{rm dex}$ dimmer than the observed one at $zsimeq 2$. Furthermore, we explore continuum spectral indices, the Balmer break at $4000$AA (D4000) and the UV continuum slope $beta$. The median D4000 versus sSFR relation predicted at $z=2$ is in agreement with the local calibration despite a different distribution pattern of galaxies in this plane. In addition, we reproduce the observed $A_{rm UV}$ versus $beta$ relation and explore its dependence on galaxy stellar mass, providing an explanation for the observed complexity of this relation. We also find a deficiency in heavily attenuated, UV red galaxies in the simulations. Finally, we provide predictions for the dust attenuation curves of galaxies at $z=2-6$ and investigate their dependence on galaxy colors and stellar masses. The attenuation curves are steeper in galaxies at higher redshifts, with bluer colors, or with lower stellar masses. We attribute these predicted trends to dust geometry. Overall, our results are consistent with present observations of high redshift galaxies. Future JWST observations will further test these predictions.



rate research

Read More

160 - Mark Vogelsberger 2019
The James Webb Space Telescop (JWST) promises to revolutionise our understanding of the early Universe, and contrasting its upcoming observations with predictions of the $Lambda$CDM model requires detailed theoretical forecasts. Here, we exploit the large dynamic range of the IllustrisTNG simulation suite, TNG50, TNG100, and TNG300, to derive multi-band galaxy luminosity functions from $z=2$ to $z=10$. We put particular emphasis on the exploration of different dust attenuation models to determine galaxy luminosity functions for the rest-frame ultraviolet (UV), and apparent wide NIRCam bands. Our most detailed dust model is based on continuum Monte Carlo radiative transfer calculations employing observationally calibrated dust properties. This calibration results in constraints on the redshift evolution of the dust attenuation normalisation and dust-to-metal ratios yielding a stronger redshift evolution of the attenuation normalisation compared to most previous theoretical studies. Overall we find good agreement between the rest-frame UV luminosity functions and observational data for all redshifts, also beyond the regimes used for the dust-model calibrations. Furthermore, we also recover the observed high redshift ($z=4-6$) UV luminosity versus stellar mass relation, the H$alpha$ versus star formation rate relation, and the H$alpha$ luminosity function at $z=2$. The bright end ($M_{rm UV}>-19.5$) cumulative galaxy number densities are consistent with observational data. For the F200W NIRCam band, we predict that JWST will detect $sim 80$ ($sim 200$) galaxies with a signal-to-noise ratio of $10$ ($sim 5$) within the NIRCam field of view, $2.2times2.2 ,{rm arcmin}^{2}$, for a total exposure time of $10^5{rm s}$ in the redshift range $z=8 pm 0.5$. These numbers drop to $sim 10$ ($sim 40$) for an exposure time of $10^4{rm s}$.
We post-process galaxies in the IllustrisTNG simulations with SKIRT radiative transfer calculations to make predictions for the rest-frame near-infrared (NIR) and far-infrared (FIR) properties of galaxies at $zgeq 4$. The rest-frame $K$- and $z$-band galaxy luminosity functions from TNG are overall consistent with observations, despite a $sim 0.4,mathrm{dex}$ underprediction at $z=4$ for $M_{rm z}lesssim -24$. Predictions for the JWST MIRI observed galaxy luminosity functions and number counts are given. We show that the next-generation survey conducted by JWST can detect 500 (30) galaxies in F1000W in a survey area of $500,{rm arcmin}^{2}$ at $z=6$ ($z=8$). As opposed to the consistency in the UV, optical and NIR, we find that TNG, combined with our dust modelling choices, significantly underpredicts the abundance of most dust-obscured and thus most luminous FIR galaxies. As a result, the obscured cosmic star formation rate density (SFRD) and the SFRD contributed by optical/NIR dark objects are underpredicted. The discrepancies discovered here could provide new constraints on the sub-grid feedback models, or the dust contents, of simulations. Meanwhile, although the TNG predicted dust temperature and its relations with IR luminosity and redshift are qualitatively consistent with observations, the peak dust temperature of $zgeq 6$ galaxies are overestimated by about $20,{rm K}$. This could be related to the limited mass resolution of our simulations to fully resolve the porosity of the interstellar medium (or specifically its dust content) at these redshifts.
Dust has been detected in high-redshift ($z>5$) galaxies but its origin is still being debated. Dust production in high-redshift galaxies could be dominated by stellar production or by accretion (dust growth) in the interstellar medium. Previous studies have shown that these two dust sources predict different grain size distributions, which lead to significantly different extinction curves. In this paper, we investigate how the difference in the extinction curves affects the dust attenuation properties of galaxies by performing radiative transfer calculations. To examine the major effects of the dust--stars distribution geometry, we adopt two representative cases in spherical symmetry: the well-mixed geometry (stars and dust are homogeneously mixed) and the two-layer geometry (young stars are more concentrated in the centre). In both cases, we confirm that the attenuation curve can be drastically steepened by scattering and by different optical depths between young and old stellar populations, and can be flattened by the existence of unobscured stellar populations. We can reproduce similar attenuation curves even with very different extinction curves. Thus, we conclude that it is difficult to distinguish the dust sources only with attenuation curves. However, if we include information on dust emission and plot the IRX (infrared excess)--$beta$ (ultraviolet spectral slope) relation, different dust sources predict different positions in the IRX--$beta$ diagram. A larger $beta$ is preferred under a similar IRX if dust growth is the dominant dust source.
75 - Volker Springel 2017
Hydrodynamical simulations of galaxy formation have now reached sufficient volume to make precision predictions for clustering on cosmologically relevant scales. Here we use our new IllustrisTNG simulations to study the non-linear correlation functions and power spectra of baryons, dark matter, galaxies and haloes over an exceptionally large range of scales. We find that baryonic effects increase the clustering of dark matter on small scales and damp the total matter power spectrum on scales up to k ~ 10 h/Mpc by 20%. The non-linear two-point correlation function of the stellar mass is close to a power-law over a wide range of scales and approximately invariant in time from very high redshift to the present. The two-point correlation function of the simulated galaxies agrees well with SDSS at its mean redshift z ~ 0.1, both as a function of stellar mass and when split according to galaxy colour, apart from a mild excess in the clustering of red galaxies in the stellar mass range 10^9-10^10 Msun/h^2. Given this agreement, the TNG simulations can make valuable theoretical predictions for the clustering bias of different galaxy samples. We find that the clustering length of the galaxy auto-correlation function depends strongly on stellar mass and redshift. Its power-law slope gamma is nearly invariant with stellar mass, but declines from gamma ~ 1.8 at redshift z=0 to gamma ~ 1.6 at redshift z ~ 1, beyond which the slope steepens again. We detect significant scale-dependencies in the bias of different observational tracers of large-scale structure, extending well into the range of the baryonic acoustic oscillations and causing nominal (yet fortunately correctable) shifts of the acoustic peaks of around ~5%.
We present basic properties of $sim$3,300 emission line galaxies detected by the FastSound survey, which are mostly H$alpha$ emitters at $z sim$ 1.2-1.5 in the total area of about 20 deg$^2$, with the H$alpha$ flux sensitivity limit of $sim 1.6 times 10^{-16} rm erg cm^{-2} s^{-1}$ at 4.5 sigma. This paper presents the catalogs of the FastSound emission lines and galaxies, which will be open to the public in the near future. We also present basic properties of typical FastSound H$alpha$ emitters, which have H$alpha$ luminosities of $10^{41.8}$-$10^{43.3}$ erg/s, SFRs of 20--500 $M_odot$/yr, and stellar masses of $10^{10.0}$--$10^{11.3}$ $M_odot$. The 3D distribution maps for the four fields of CFHTLS W1--4 are presented, clearly showing large scale clustering of galaxies at the scale of $sim$ 100--600 comoving Mpc. Based on 1,105 galaxies with detections of multiple emission lines, we estimate that contamination of non-H$alpha$ lines is about 4% in the single-line emission galaxies, which are mostly [OIII]$lambda$5007. This contamination fraction is also confirmed by the stacked spectrum of all the FastSound spectra, in which H$alpha$, [NII]$lambda lambda$6548,6583, [SII]$lambda lambda$6717, 6731, and [OI]$lambda lambda$6300,6364 are seen.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا