Do you want to publish a course? Click here

Sketchformer: Transformer-based Representation for Sketched Structure

77   0   0.0 ( 0 )
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Sketchformer is a novel transformer-based representation for encoding free-hand sketches input in a vector form, i.e. as a sequence of strokes. Sketchformer effectively addresses multiple tasks: sketch classification, sketch based image retrieval (SBIR), and the reconstruction and interpolation of sketches. We report several variants exploring continuous and tokenized input representations, and contrast their performance. Our learned embedding, driven by a dictionary learning tokenization scheme, yields state of the art performance in classification and image retrieval tasks, when compared against baseline representations driven by LSTM sequence to sequence architectures: SketchRNN and derivatives. We show that sketch reconstruction and interpolation are improved significantly by the Sketchformer embedding for complex sketches with longer stroke sequences.



rate research

Read More

Transformer has been widely used for self-supervised pre-training in Natural Language Processing (NLP) and achieved great success. However, it has not been fully explored in visual self-supervised learning. Meanwhile, previous methods only consider the high-level feature and learning representation from a global perspective, which may fail to transfer to the downstream dense prediction tasks focusing on local features. In this paper, we present a novel Masked Self-supervised Transformer approach named MST, which can explicitly capture the local context of an image while preserving the global semantic information. Specifically, inspired by the Masked Language Modeling (MLM) in NLP, we propose a masked token strategy based on the multi-head self-attention map, which dynamically masks some tokens of local patches without damaging the crucial structure for self-supervised learning. More importantly, the masked tokens together with the remaining tokens are further recovered by a global image decoder, which preserves the spatial information of the image and is more friendly to the downstream dense prediction tasks. The experiments on multiple datasets demonstrate the effectiveness and generality of the proposed method. For instance, MST achieves Top-1 accuracy of 76.9% with DeiT-S only using 300-epoch pre-training by linear evaluation, which outperforms supervised methods with the same epoch by 0.4% and its comparable variant DINO by 1.0%. For dense prediction tasks, MST also achieves 42.7% mAP on MS COCO object detection and 74.04% mIoU on Cityscapes segmentation only with 100-epoch pre-training.
119 - Simon Ging 2020
Many real-world video-text tasks involve different levels of granularity, such as frames and words, clip and sentences or videos and paragraphs, each with distinct semantics. In this paper, we propose a Cooperative hierarchical Transformer (COOT) to leverage this hierarchy information and model the interactions between different levels of granularity and different modalities. The method consists of three major components: an attention-aware feature aggregation layer, which leverages the local temporal context (intra-level, e.g., within a clip), a contextual transformer to learn the interactions between low-level and high-level semantics (inter-level, e.g. clip-video, sentence-paragraph), and a cross-modal cycle-consistency loss to connect video and text. The resulting method compares favorably to the state of the art on several benchmarks while having few parameters. All code is available open-source at https://github.com/gingsi/coot-videotext
Person re-identification (re-ID) under various occlusions has been a long-standing challenge as person images with different types of occlusions often suffer from misalignment in image matching and ranking. Most existing methods tackle this challenge by aligning spatial features of body parts according to external semantic cues or feature similarities but this alignment approach is complicated and sensitive to noises. We design DRL-Net, a disentangled representation learning network that handles occluded re-ID without requiring strict person image alignment or any additional supervision. Leveraging transformer architectures, DRL-Net achieves alignment-free re-ID via global reasoning of local features of occluded person images. It measures image similarity by automatically disentangling the representation of undefined semantic components, e.g., human body parts or obstacles, under the guidance of semantic preference object queries in the transformer. In addition, we design a decorrelation constraint in the transformer decoder and impose it over object queries for better focus on different semantic components. To better eliminate interference from occlusions, we design a contrast feature learning technique (CFL) for better separation of occlusion features and discriminative ID features. Extensive experiments over occluded and holistic re-ID benchmarks (Occluded-DukeMTMC, Market1501 and DukeMTMC) show that the DRL-Net achieves superior re-ID performance consistently and outperforms the state-of-the-art by large margins for Occluded-DukeMTMC.
300 - Yong Li , Yufei Sun , Zhen Cui 2021
Face recognition (FR) has made extraordinary progress owing to the advancement of deep convolutional neural networks. However, demographic bias among different racial cohorts still challenges the practical face recognition system. The race factor has been proven to be a dilemma for fair FR (FFR) as the subject-related specific attributes induce the classification bias whilst carrying some useful cues for FR. To mitigate racial bias and meantime preserve robust FR, we abstract face identity-related representation as a signal denoising problem and propose a progressive cross transformer (PCT) method for fair face recognition. Originating from the signal decomposition theory, we attempt to decouple face representation into i) identity-related components and ii) noisy/identity-unrelated components induced by race. As an extension of signal subspace decomposition, we formulate face decoupling as a generalized functional expression model to cross-predict face identity and race information. The face expression model is further concretized by designing dual cross-transformers to distill identity-related components and suppress racial noises. In order to refine face representation, we take a progressive face decoupling way to learn identity/race-specific transformations, so that identity-unrelated components induced by race could be better disentangled. We evaluate the proposed PCT on the public fair face recognition benchmarks (BFW, RFW) and verify that PCT is capable of mitigating bias in face recognition while achieving state-of-the-art FR performance. Besides, visualization results also show that the attention maps in PCT can well reveal the race-related/biased facial regions.
DETR is a recently proposed Transformer-based method which views object detection as a set prediction problem and achieves state-of-the-art performance but demands extra-long training time to converge. In this paper, we investigate the causes of the optimization difficulty in the training of DETR. Our examinations reveal several factors contributing to the slow convergence of DETR, primarily the issues with the Hungarian loss and the Transformer cross attention mechanism. To overcome these issues we propose two solutions, namely, TSP-FCOS (Transformer-based Set Prediction with FCOS) and TSP-RCNN (Transformer-based Set Prediction with RCNN). Experimental results show that the proposed methods not only converge much faster than the original DETR, but also significantly outperform DETR and other baselines in terms of detection accuracy.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا