No Arabic abstract
In recent years, exciting developments have taken place in the identification of the role of cosmic rays in star-forming environments. Observations from radio to infrared wavelengths and theoretical modelling have shown that low-energy cosmic rays (<1 TeV) play a fundamental role in shaping the chemical richness of the interstellar medium, determining the dynamical evolution of molecular clouds. In this review we summarise in a coherent picture the main results obtained by observations and by theoretical models of propagation and generation of cosmic rays, from the smallest scales of protostars and circumstellar discs, to young stellar clusters, up to Galactic and extragalactic scales. We also discuss the new fields that will be explored in the near future thanks to new generation instruments, such as: CTA, for the $gamma$-ray emission from high-mass protostars; SKA and precursors, for the synchrotron emission at different scales; and ELT/HIRES, JWST, and ARIEL, for the impact of cosmic rays on exoplanetary atmospheres and habitability.
We consider the rate of ionization of diffuse and molecular clouds in the interstellar medium by Galactic cosmic rays (GCR) in order to constrain its low energy spectrum. We extrapolate the GCR spectrum obtained from PAMELA at high energies ($ge 200$ GeV/ nucleon) and a recently derived GCR proton flux at $1hbox{--}200$ GeV from observations of gamma rays from molecular clouds, and find that the observed average Galactic ionization rate can be reconciled with this GCR spectrum if there is a low energy cutoff for protons at $10hbox{--}100$ MeV. We also identify the flattening below a few GeV as being due to (a) decrease of the diffusion coefficient and dominance of convective loss at low energy and (b) the expected break in energy spectrum for a constant spectral index in momentum. We show that the inferred CR proton spectrum of $Phi propto E_{kin}^{-1.7pm0.2}$ for $E_{kin} le$ few GeV, is consistent with a power-law spectrum in momentum $p^{-2.45pm0.4}$, which we identify as the spectrum at source. Diffusion loss at higher energies then introduces a steepening by $E^{-alpha}$ with $alpha sim 1/3$, making it consistent with high energy measurements.
In light of evidence for a high ionization rate due to Low-Energy Cosmic Rays (LECR), in diffuse molecular gas in the solar neighbourhood, we evaluate their heat input to the Warm Ionized Medium (WIM). LECR are much more effective at heating plasma than they are at heating neutrals. We show that the upper end of the measured ionization rates corresponds to a local LECR heating rate sufficient to maintain the WIM against radiative cooling, independent of the nature of the ionizing particles or the detailed shape of their spectrum. Elsewhere in the Galaxy the LECR heating rates may be higher than measured locally. In particular, higher fluxes of LECR have been suggested for the inner Galactic disk, based on the observed hard X-ray emission, with correspondingly larger heating rates implied for the WIM. We conclude that LECR play an important, perhaps dominant role in the thermal balance of the WIM.
Interpretations of synchrotron observations often assume a tight correlation between magnetic and cosmic ray energy densities. We examine this assumption using both test-particle simulations of cosmic rays and MHD simulations which include cosmic rays as a diffusive fluid. We find no spatial correlation between the cosmic rays and magnetic field energy densities at turbulent scales. Moreover, the cosmic ray number density and magnetic field energy density are statistically independent. Nevertheless, the cosmic ray spatial distribution is highly inhomogeneous, especially at low energies because the particles are trapped between random magnetic mirrors. These results can significantly change the interpretation of synchrotron observations and thus our understanding of the strength and structure of magnetic fields in the Milky Way and nearby spiral galaxies.
The question how much star formation is occurring at low metallicity throughout the cosmic history appears crucial for the discussion of the origin of various energetic transients, and possibly - double black hole mergers. We revisit the observation-based distribution of birth metallicities of stars (f$_{rm SFR}$(Z,z)), focusing on several factors that strongly affect its low metallicity part: (i) the method used to describe the metallicity distribution of galaxies (redshift-dependent mass metallicity relation - MZR, or redshift-invariant fundamental metallicity relation - FMR), (ii) the contribution of starburst galaxies and (iii) the slope of the MZR. We empirically construct the FMR based on the low-redshift scaling relations, which allows us to capture the systematic differences in the relation caused by the choice of metallicity and star formation rate (SFR) determination techniques and discuss the related f$_{rm SFR}$(Z,z) uncertainty. We indicate factors that dominate the f$_{rm SFR}$(Z,z) uncertainty in different metallicity and redshift regimes. The low metallicity part of the distribution is poorly constrained even at low redshifts (even a factor of $sim$200 difference between the model variations) The non-evolving FMR implies a much shallower metallicity evolution than the extrapolated MZR, however, its effect on the low metallicity part of the f$_{rm SFR}$(Z,z) is counterbalanced by the contribution of starbursts (assuming that they follow the FMR). A non-negligible fraction of starbursts in our model may be necessary to satisfy the recent high-redshift SFR density constraints.
An accurate knowledge of the fluorescence yield and its dependence on atmospheric properties such as pressure, temperature or humidity is essential to obtain a reliable measurement of the primary energy of cosmic rays in experiments using the fluorescence technique. In this work, several sets of fluorescence yield data (i.e. absolute value and quenching parameters) are described and compared. A simple procedure to study the effect of the assumed fluorescence yield on the reconstructed shower parameters (energy and shower maximum depth) as a function of the primary features has been developed. As an application, the effect of water vapor and temperature dependence of the collisional cross section on the fluorescence yield and its impact on the reconstruction of primary energy and shower maximum depth has been studied.