The nonextensive statistical ensembles with dual thermodynamic interpretations


Abstract in English

The nonextensive statistical ensembles are revisited for the complex systems with long-range interactions and long-range correlations. An approximation, the value of nonextensive parameter (1-q) is assumed to be very tiny, is adopted for the limit of large particle number for most normal systems. In this case, Tsallis entropy can be expanded as a function of energy and particle number fluctuation, and thus the power-law forms of the generalized Gibbs distribution and grand canonical distribution can be derived. These new distribution functions can be applied to derive the free energy and grand thermodynamic potential in nonextensive thermodynamics. In order to establish appropriate nonextensive thermodynamic formalism, the dual thermodynamic interpretations are necessary for thermodynamic relations and thermodynamic quantities. By using a new technique of parameter transformation, the single-particle distribution can be deduced from the power-law Gibbs distribution. This technique produces a link between the statistical ensemble and the quasi-independent system with two kinds of nonextensive parameter having quite different physical explanations. Furthermore, the technique is used to construct nonextensive quantum statistics and effectively to avoid the factorization difficulty in the power-law grand canonical distribution.

Download