Do you want to publish a course? Click here

Implicit Geometric Regularization for Learning Shapes

115   0   0.0 ( 0 )
 Added by Amos Gropp
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Representing shapes as level sets of neural networks has been recently proved to be useful for different shape analysis and reconstruction tasks. So far, such representations were computed using either: (i) pre-computed implicit shape representations; or (ii) loss functions explicitly defined over the neural level sets. In this paper we offer a new paradigm for computing high fidelity implicit neural representations directly from raw data (i.e., point clouds, with or without normal information). We observe that a rather simple loss function, encouraging the neural network to vanish on the input point cloud and to have a unit norm gradient, possesses an implicit geometric regularization property that favors smooth and natural zero level set surfaces, avoiding bad zero-loss solutions. We provide a theoretical analysis of this property for the linear case, and show that, in practice, our method leads to state of the art implicit neural representations with higher level-of-details and fidelity compared to previous methods.

rate research

Read More

211 - Behnam Neyshabur 2017
In an attempt to better understand generalization in deep learning, we study several possible explanations. We show that implicit regularization induced by the optimization method is playing a key role in generalization and success of deep learning models. Motivated by this view, we study how different complexity measures can ensure generalization and explain how optimization algorithms can implicitly regularize complexity measures. We empirically investigate the ability of these measures to explain different observed phenomena in deep learning. We further study the invariances in neural networks, suggest complexity measures and optimization algorithms that have similar invariances to those in neural networks and evaluate them on a number of learning tasks.
We propose a method to learn object representations from 3D point clouds using bundles of geometrically interpretable hidden units, which we call geometric capsules. Each geometric capsule represents a visual entity, such as an object or a part, and consists of two components: a pose and a feature. The pose encodes where the entity is, while the feature encodes what it is. We use these capsules to construct a Geometric Capsule Autoencoder that learns to group 3D points into parts (small local surfaces), and these parts into the whole object, in an unsupervised manner. Our novel Multi-View Agreement voting mechanism is used to discover an objects canonical pose and its pose-invariant feature vector. Using the ShapeNet and ModelNet40 datasets, we analyze the properties of the learned representations and show the benefits of having multiple votes agree. We perform alignment and retrieval of arbitrarily rotated objects -- tasks that evaluate our models object identification and canonical pose recovery capabilities -- and obtained insightful results.
We argue that the optimization plays a crucial role in generalization of deep learning models through implicit regularization. We do this by demonstrating that generalization ability is not controlled by network size but rather by some other implicit control. We then demonstrate how changing the empirical optimization procedure can improve generalization, even if actual optimization quality is not affected. We do so by studying the geometry of the parameter space of deep networks, and devising an optimization algorithm attuned to this geometry.
In recent years, neural networks have demonstrated an outstanding ability to achieve complex learning tasks across various domains. However, they suffer from the catastrophic forgetting problem when they face a sequence of learning tasks, where they forget the old ones as they learn new tasks. This problem is also highly related to the stability-plasticity dilemma. The more plastic the network, the easier it can learn new tasks, but the faster it also forgets previous ones. Conversely, a stable network cannot learn new tasks as fast as a very plastic network. However, it is more reliable to preserve the knowledge it has learned from the previous tasks. Several solutions have been proposed to overcome the forgetting problem by making the neural network parameters more stable, and some of them have mentioned the significance of dropout in continual learning. However, their relationship has not been sufficiently studied yet. In this paper, we investigate this relationship and show that a stable network with dropout learns a gating mechanism such that for different tasks, different paths of the network are active. Our experiments show that the stability achieved by this implicit gating plays a very critical role in leading to performance comparable to or better than other involved continual learning algorithms to overcome catastrophic forgetting.
101 - Yangdi Lu , Yang Bo , Wenbo He 2021
Recent studies on the memorization effects of deep neural networks on noisy labels show that the networks first fit the correctly-labeled training samples before memorizing the mislabeled samples. Motivated by this early-learning phenomenon, we propose a novel method to prevent memorization of the mislabeled samples. Unlike the existing approaches which use the model output to identify or ignore the mislabeled samples, we introduce an indicator branch to the original model and enable the model to produce a confidence value for each sample. The confidence values are incorporated in our loss function which is learned to assign large confidence values to correctly-labeled samples and small confidence values to mislabeled samples. We also propose an auxiliary regularization term to further improve the robustness of the model. To improve the performance, we gradually correct the noisy labels with a well-designed target estimation strategy. We provide the theoretical analysis and conduct the experiments on synthetic and real-world datasets, demonstrating that our approach achieves comparable results to the state-of-the-art methods.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا