Do you want to publish a course? Click here

The Spin Alignment of Vector Mesons in High Energy pp Collisions

108   0   0.0 ( 0 )
 Added by Zuo-Tang Liang
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

The spin alignment of vector meson produced in high energy reactions is determined by the spin-dependent fragmentation function $D_{1LL} (z,mu_f)$ that is shown to be independent of the polarization of the fragmenting quark. In this paper, we extract the spin-dependent fragmentation function $D_{1LL} (z,mu_f)$ from data on the spin alignment of $K^{*0}$ in $e^+e^-$ annihilation at LEP in two different scenarios and apply them to make predictions in $pp$ collisions. We make detailed analysis of contributions from different sub-processes and show that the spin alignment should be quite significant also in high energy $pp$ collisions.



rate research

Read More

277 - Alejandro Ayala 2009
The spin alignment matrix element rho_{00} for the vector mesons K^{*0} and phi(1020) has been measured in RHIC at central rapidities. These measurements are consistent with the absence of polarization with respect to the reaction plane in mid-central Au + Au collisions whereas, when measured with respect to the production plane in the same reactions and in p + p collisions, a non-vanishing and p_perp-dependent rho_{00} is found. We show that this behavior can be understood in a simple model of vector meson production where the spin of their constituent quarks is oriented during hadronization as the result of Thomas precession.
79 - Ranbir Singh 2018
We present new measurements related to spin alignment of $mathrm{K^{*0}}$ vector mesons at mid-rapidity for Pb-Pb collisions at $sqrt{s_{mathrm{NN}}}$ = 2.76 and 5.02 TeV. The spin alignment measurements are carried out with respect to production plane and second order event plane. At low $p_{mathrm{T}}$ the spin density matrix element $rho_{00}$ for $mathrm{K^{*0}}$ is found to have values slightly below 1/3, while it is consistent with 1/3, i.e. no spin alignment, at high $p_{mathrm{T}}$. Similar values of $rho_{00}$ are observed w.r.t. both production plane and event plane. Within statistical and systematic uncertainties, $rho_{00}$ values are also found to be independent of $sqrt{s_{mathrm{NN}}}$. $rho_{00}$ also shows centrality dependence with maximum deviation from 1/3 for mid-central collisions w.r.t. both the kinematic planes. The measurements for $mathrm{K^{*0}}$ in pp collisions at $sqrt{s}$ = 13 TeV and for $mathrm{K^{0}_{S}}$ (a spin 0 hadron) in 20-40% central Pb-Pb collisions at $sqrt{s_{mathrm{NN}}}$ = 2.76 TeV are consistent with no spin alignment.
We study the longitudinal polarization of the Sigma_bar and Xi_bar anti-hyperons in polarized high energy pp collisions at large transverse momenta, extending a recent study for the Lambda_bar anti-hyperon. We make predictions by using different parametrizations of the polarized parton densities and models for the polarized fragmentation functions. Similar to the Lambda_bar polarization, the Xi_bar0 and Xi_bar+ polarizations are found to be sensitive to the polarized anti-strange sea in the nucleon. The Sigma_bar- and Sigma_bar+ polarizations show sensitivity to the light sea quark polarizations, Delta bar u(x) and Delta bar d(x), and their asymmetry.
We present a study of transverse momentum ($p_{T}$) spectra of unidentified charged particles in pp collisions at RHIC and LHC energies from $sqrt{s}$ = 62.4 GeV to 13 TeV using Tsallis/Hagedorn function. The power law of Tsallis/Hagedorn form gives excellent description of the hadron spectra in $p_{T}$ range from 0.2 to 300 GeV/$c$. The power index $n$ of the $p_T$ distributions is found to follow a function of the type $a+b/sqrt {s}$ with asymptotic value $a = 5.72$. The parameter $T$ governing the soft bulk contribution to the spectra remains almost same over wide range of collision energies. We also provide a Tsallis/Hagedorn fit to the $p_{T}$ spectra of hadrons in pPb and different centralities of PbPb collisions at $sqrt{s_{NN}}$ = 5.02 TeV. The data/fit shows deviations from the Tsallis distribution which become more pronounced as the system size increases. We suggest simple modifications in the Tsallis/Hagedorn power law function and show that the above deviations can be attributed to the transverse flow in low $p_T$ region and to the in-medium energy loss in high $p_T$ region.
135 - J.P.Ma 2001
In the heavy quark limit inclusive production rate of a heavy meson can be factorized, in which the nonperturbative effect related to the heavy meson can be characterized by matrix elements defined in the heavy quark effective theory. Using this factorization, predictions for the full spin density matrix of a spin-1 and spin-2 meson can be obtained and they are characterized only by one coefficient representing the nonperturbative effect. Predictions for spin-1 heavy meson are compared with experiment performed at $e^+e^-$ colliders in the energy range from $sqrt{s}=10.5$GeV to $sqrt{s}=91$GeV, a complete agreement is found for $D^*$- and $B^*$-meson. For $D^{**}$ meson, our prediction suffers a large correction, as indicated by experimental data. There exists another approach by taking heavy mesons as bound systems, in which the total angular momentum of the light degrees of freedom is 1/2 and 3/2 for spin-1 and spin-2 meson respectively, then the diagonal parts of spin density matrices can be obtained. However, there are distinct differences in the predictions from the two approaches and they are discussed in detail.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا