Do you want to publish a course? Click here

Knowledge Transfer between Buildings for Seismic Damage Diagnosis through Adversarial Learning

234   0   0.0 ( 0 )
 Added by Susu Xu
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Automated structural damage diagnosis after earthquakes is important for improving the efficiency of disaster response and rehabilitation. In conventional data-driven frameworks which use machine learning or statistical models, structural damage diagnosis models are often constructed using supervised learning. The supervised learning requires historical structural response data and corresponding damage states (i.e., labels) for each building to learn the building-specific damage diagnosis model. However, in post-earthquake scenarios, historical data with labels are often not available for many buildings in the affected area. This makes it difficult to construct a damage diagnosis model. Further, directly using the historical data from other buildings to construct a damage diagnosis model for the target building would lead to inaccurate results. This is because each building has unique physical properties and thus unique data distribution. To this end, we introduce a new framework to transfer the model learned from other buildings to diagnose structural damage states in the target building without any labels. This framework is based on an adversarial domain adaptation approach that extracts domain-invariant feature representations of data from different buildings. The feature extraction function is trained in an adversarial way, which ensures that the extracted feature distributions are robust to changes in structures while being predictive of the damage states. With the extracted domain-invariant feature representations, the data distributions become consistent across different buildings. We evaluate our framework on both numerical simulation and field data collected from multiple building structures, which outperforms the state-of-the-art benchmark methods.

rate research

Read More

Knowledge representation learning has received a lot of attention in the past few years. The success of existing methods heavily relies on the quality of knowledge graphs. The entities with few triplets tend to be learned with less expressive power. Fortunately, there are many knowledge graphs constructed from various sources, the representations of which could contain much information. We propose an adversarial embedding transfer network ATransN, which transfers knowledge from one or more teacher knowledge graphs to a target one through an aligned entity set without explicit data leakage. Specifically, we add soft constraints on aligned entity pairs and neighbours to the existing knowledge representation learning methods. To handle the problem of possible distribution differences between teacher and target knowledge graphs, we introduce an adversarial adaption module. The discriminator of this module evaluates the degree of consistency between the embeddings of an aligned entity pair. The consistency score is then used as the weights of soft constraints. It is not necessary to acquire the relations and triplets in teacher knowledge graphs because we only utilize the entity representations. Knowledge graph completion results show that ATransN achieves better performance against baselines without transfer on three datasets, CN3l, WK3l, and DWY100k. The ablation study demonstrates that ATransN can bring steady and consistent improvement in different settings. The extension of combining other knowledge graph embedding algorithms and the extension with three teacher graphs display the promising generalization of the adversarial transfer network.
Monitoring bridge health using the vibrations of drive-by vehicles has various benefits, such as low cost and no need for direct installation or on-site maintenance of equipment on the bridge. However, many such approaches require labeled data from every bridge, which is expensive and time-consuming, if not impossible, to obtain. This is further exacerbated by having multiple diagnostic tasks, such as damage quantification and localization. One way to address this issue is to directly apply the supervised model trained for one bridge to other bridges, although this may significantly reduce the accuracy because of distribution mismatch between different bridgesdata. To alleviate these problems, we introduce a transfer learning framework using domain-adversarial training and multi-task learning to detect, localize and quantify damage. Specifically, we train a deep network in an adversarial way to learn features that are 1) sensitive to damage and 2) invariant to different bridges. In addition, to improve the error propagation from one task to the next, our framework learns shared features for all the tasks using multi-task learning. We evaluate our framework using lab-scale experiments with two different bridges. On average, our framework achieves 94%, 97% and 84% accuracy for damage detection, localization and quantification, respectively. within one damage severity level.
Recent progress on intelligent fault diagnosis has greatly depended on the deep learning and plenty of labeled data. However, the machine often operates with various working conditions or the target task has different distributions with the collected data used for training (we called the domain shift problem). This leads to the deep transfer learning based (DTL-based) intelligent fault diagnosis which attempts to remit this domain shift problem. Besides, the newly collected testing data are usually unlabeled, which results in the subclass DTL-based methods called unsupervised deep transfer learning based (UDTL-based) intelligent fault diagnosis. Although it has achieved huge development in the field of fault diagnosis, a standard and open source code framework and a comparative study for UDTL-based intelligent fault diagnosis are not yet established. In this paper, commonly used UDTL-based algorithms in intelligent fault diagnosis are integrated into a unified testing framework and the framework is tested on five datasets. Extensive experiments are performed to provide a systematically comparative analysis and the benchmark accuracy for more comparable and meaningful further studies. To emphasize the importance and reproducibility of UDTL-based intelligent fault diagnosis, the testing framework with source codes will be released to the research community to facilitate future research. Finally, comparative analysis of results also reveals some open and essential issues in DTL for intelligent fault diagnosis which are rarely studied including transferability of features, influence of backbones, negative transfer, and physical priors. In summary, the released framework and comparative study can serve as an extended interface and the benchmark results to carry out new studies on UDTL-based intelligent fault diagnosis. The code framework is available at https://github.com/ZhaoZhibin/UDTL.
77 - Qin Wang , Cees Taal , Olga Fink 2021
Data-driven fault diagnosis methods often require abundant labeled examples for each fault type. On the contrary, real-world data is often unlabeled and consists of mostly healthy observations and only few samples of faulty conditions. The lack of labels and fault samples imposes a significant challenge for existing data-driven fault diagnosis methods. In this paper, we aim to overcome this limitation by integrating expert knowledge with domain adaptation in a synthetic-to-real framework for unsupervised fault diagnosis. Motivated by the fact that domain experts often have a relatively good understanding on how different fault types affect healthy signals, in the first step of the proposed framework, a synthetic fault dataset is generated by augmenting real vibration samples of healthy bearings. This synthetic dataset integrates expert knowledge and encodes class information about the faults types. However, models trained solely based on the synthetic data often do not perform well because of the distinct distribution difference between the synthetically generated and real faults. To overcome this domain gap between the synthetic and real data, in the second step of the proposed framework, an imbalance-robust domain adaptation~(DA) approach is proposed to adapt the model from synthetic faults~(source) to the unlabeled real faults~(target) which suffer from severe class imbalance. The framework is evaluated on two unsupervised fault diagnosis cases for bearings, the CWRU laboratory dataset and a real-world wind-turbine dataset. Experimental results demonstrate that the generated faults are effective for encoding fault type information and the domain adaptation is robust against the different levels of class imbalance between faults.
308 - Yu Qin , Yuxing Li , Zhiwen Liu 2019
Learning-based approaches, especially those based on deep networks, have enabled high-quality estimation of tissue microstructure from low-quality diffusion magnetic resonance imaging (dMRI) scans, which are acquired with a limited number of diffusion gradients and a relatively poor spatial resolution. These learning-based approaches to tissue microstructure estimation require acquisitions of training dMRI scans with high-quality diffusion signals, which are densely sampled in the q-space and have a high spatial resolution. However, the acquisition of training scans may not be available for all datasets. Therefore, we explore knowledge transfer between different dMRI datasets so that learning-based tissue microstructure estimation can be applied for datasets where training scans are not acquired. Specifically, for a target dataset of interest, where only low-quality diffusion signals are acquired without training scans, we exploit the information in a source dMRI dataset acquired with high-quality diffusion signals. We interpolate the diffusion signals in the source dataset in the q-space using a dictionary-based signal representation, so that the interpolated signals match the acquisition scheme of the target dataset. Then, the interpolated signals are used together with the high-quality tissue microstructure computed from the source dataset to train deep networks that perform tissue microstructure estimation for the target dataset. Experiments were performed on brain dMRI scans with low-quality diffusion signals, where the benefit of the proposed strategy is demonstrated.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا