Gravitational wave population inference with deep flow-based generative network


Abstract in English

We combine hierarchical Bayesian modeling with a flow-based deep generative network, in order to demonstrate that one can efficiently constraint numerical gravitational wave (GW) population models at a previously intractable complexity. Existing techniques for comparing data to simulation,such as discrete model selection and Gaussian process regression, can only be applied efficiently to moderate-dimension data. This limits the number of observable (e.g. chirp mass, spins.) and hyper-parameters (e.g. common envelope efficiency) one can use in a population inference. In this study, we train a network to emulate a phenomenological model with 6 observables and 4 hyper-parameters, use it to infer the properties of a simulated catalogue and compare the results to the phenomenological model. We find that a 10-layer network can emulate the phenomenological model accurately and efficiently. Our machine enables simulation-based GW population inferences to take on data at a new complexity level.

Download