Do you want to publish a course? Click here

Spin-Valley Locking Effect in Defect States of Monolayer MoS$_2$

109   0   0.0 ( 0 )
 Added by Bo Peng
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Valley pseudospin in two-dimensional (2D) transition-metal dichalcogenides (TMDs) allows optical control of spin-valley polarization and intervalley quantum coherence. Defect states in TMDs give rise to new exciton features and theoretically exhibit spin-valley polarization; however, experimental achievement of this phenomenon remains challenges. Here, we report unambiguous valley pseudospin of defect-bound localized excitons in CVD-grown monolayer MoS2; enhanced valley Zeeman splitting with an effective g-factor of -6.2 is observed. Our results reveal that all five d-orbitals and the increased effective electron mass contribute to the band shift of defect states, demonstrating a new physics of the magnetic responses of defect-bound localized excitons, strikingly different from that of A excitons. Our work paves the way for the manipulation of the spin-valley degrees of freedom through defects toward valleytronic devices.



rate research

Read More

Valleytronics targets the exploitation of the additional degrees of freedom in materials where the energy of the carriers may assume several equal minimum values (valleys) at non-equivalent points of the reciprocal space. In single layers of transition metal dichalcogenides (TMDs) the lack of inversion symmetry, combined with a large spin-orbit interaction, leads to a conduction (valence) band with different spin-polarized minima (maxima) having equal energies. This offers the opportunity to manipulate information at the level of the charge (electrons or holes), spin (up or down) and crystal momentum (valley). Any implementation of these concepts, however, needs to consider the robustness of such degrees of freedom, which are deeply intertwined. Here we address the spin and valley relaxation dynamics of both electrons and holes with a combination of ultrafast optical spectroscopy techniques, and determine the individual characteristic relaxation times of charge, spin and valley in a MoS$_{2}$ monolayer. These results lay the foundations for understanding the mechanisms of spin and valley polarization loss in two-dimensional TMDs: spin/valley polarizations survive almost two-orders of magnitude longer for holes, where spin and valley dynamics are interlocked, than for electrons, where these degrees of freedom are decoupled. This may lead to novel approaches for the integration of materials with large spin-orbit in robust spintronic/valleytronic platforms.
Optical spectra of two-dimensional transition-metal dichalcogenides (TMDC) are influenced by complex multi-particle excitonic states. Their theoretical analysis requires solving the many-body problem, which in most cases, is prohibitively complicated. In this work, we calculate the optical spectra by exact diagonalization of the three-particle Hamiltonian within the Tamm-Dancoff approximation where the doping effects are accounted for via the Pauli blocking mechanism, modelled by a discretized mesh in the momentum space. The single-particle basis is extracted from the {it ab initio} calculations. Obtained three-particle eigenstates and the corresponding transition dipole matrix elements are used to calculate the linear absorption spectra as a function of the doping level. Results for negatively doped MoS$_2$ monolayer (ML) are in an excellent quantitative agreement with the available experimental data, validating our approach. The results predict additional spectral features due to the intervalley exciton that is optically dark in an undoped ML but is brightened by the doping. Our approach can be applied to a plethora of other atomically thin semiconductors, where the doping induced brightening of the many-particle states is also anticipated.
76 - J.Y. Liu , J. Yu , J.L. Ning 2019
Spin-valley locking in the band structure of monolayers of MoS$_2$ and other group-VI dichalcogenides has attracted enormous interest, since it offers potential for valleytronic and optoelectronic applications. Such an exotic electronic state has sparsely been seen in bulk materials. Here, we report spin-valley locking in a bulk Dirac semimetal BaMnSb$_2$. We find valley and spin are inherently coupled for both valence and conduction bands in this material. This is revealed by comprehensive studies using first principle calculations, tight-binding and effective model analyses, angle-resolved photoemission spectroscopy and quantum transport measurements. Moreover, this material also exhibits a stacked quantum Hall effect. The spin-valley degeneracy extracted from the plateau height of quantized Hall resistivity is close to 2. This result, together with the observed Landau level spin splitting, further confirms the spin-valley locking picture. In the extreme quantum limit, we have also observed a two-dimensional chiral metal at the side surface, which represents a novel topological quantum liquid. These findings establish BaMnSb$_2$ as a rare platform for exploring coupled spin and valley physics in bulk single crystals and accessing 3D interacting topological states.
Quantum light sources in solid-state systems are of major interest as a basic ingredient for integrated quantum device technologies. The ability to tailor quantum emission through deterministic defect engineering is of growing importance for realizing scalable quantum architectures. However, a major difficulty is that defects need to be positioned site-selectively within the solid. Here, we overcome this challenge by controllably irradiating single-layer MoS$_{2}$ using a sub-nm focused helium ion beam to deterministically create defects. Subsequent encapsulation of the ion bombarded MoS$_{2}$ flake with high-quality hBN reveals spectrally narrow emission lines that produce photons at optical wavelengths in an energy window of one to two hundred meV below the neutral 2D exciton of MoS$_{2}$. Based on ab-initio calculations we interpret these emission lines as stemming from the recombination of highly localized electron-hole complexes at defect states generated by the helium ion bombardment. Our approach to deterministically write optically active defect states in a single transition metal dichalcogenide layer provides a platform for realizing exotic many-body systems, including coupled single-photon sources and exotic Hubbard systems.
We discuss here the effect of band nesting and topology on the spectrum of excitons in a single layer of MoS$_2$, a prototype transition metal dichalcogenide material. We solve for the single particle states using the ab initio based tight-binding model containing metal $d$ and sulfur $p$ orbitals. The metal orbitals contribution evolving from $K$ to $Gamma$ points results in conduction-valence band nesting and a set of second minima at $Q$ points in the conduction band. There are three $Q$ minima for each $K$ valley. We accurately solve the Bethe-Salpeter equation including both $K$ and $Q$ points and obtain ground and excited exciton states. We determine the effects of the electron-hole single particle energies including band nesting, direct and exchange screened Coulomb electron-hole interactions and resulting topological magnetic moments on the exciton spectrum. The ability to control different contributions combined with accurate calculations of the ground and excited exciton states allows for the determination of the importance of different contributions and a comparison with effective mass and $kcdot p$ massive Dirac fermion models.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا