Quantitative evaluation of laser-induced fluorescence in magnetized plasma accounting for disalignment effect


Abstract in English

Quantitative evaluation of tunable diode laser induced fluorescence (TDLIF) measurements in magnetized plasma take into account Zeeman splitting of energetic levels and intra-multiplet mixing defining the density distribution (alignment) of excited $mathrm{2p_8}$ multiplet is discussed in this paper. TDLIF measurements were used to evaluate light-transport properties in a strongly magnetized optically thick argon plasma under different pressure conditions. Therefore, a coupled system of rate balance equations were constructed to describe laser pumping of individual magnetic sub-levels of $mathrm{2p_8}$ state through frequency separated sub-transitions originating from $mathrm{1s_4}$ magnetic sub-levels. The density distribution of $mathrm{2p_8}$ multiplet was described by balancing laser pumping with losses including radiative decay, transfer of excitation between the neighboring multiplets driven by neutral collisions and quenching due to electron and neutral collisions. Resulting $mathrm{2p_8}$ magnetic sub-level densities were then used to model polarization dependent fluorescence, consider self-absorption, which could be directly compared with measured polarization resolved TDLIF measurements. This enables to obtain unique solutions for the $mathrm{1s_4}$ and $mathrm{1s_5}$ magnetic sub-level densities which were in good agreement with the densities obtained by laser absorption measurements. It is shown that LIF measurements in magnetized plasma conditions have strong pressure dependence that should be corrected consider effective disalignment rate. The presented measurement method and model can help further understanding and improve description of optical emission of argon in magnetized conditions.

Download