Asymptotically Optimal Load Balancing in Large-scale Heterogeneous Systems with Multiple Dispatchers


Abstract in English

We consider the load balancing problem in large-scale heterogeneous systems with multiple dispatchers. We introduce a general framework called Local-Estimation-Driven (LED). Under this framework, each dispatcher keeps local (possibly outdated) estimates of queue lengths for all the servers, and the dispatching decision is made purely based on these local estimates. The local estimates are updated via infrequent communications between dispatchers and servers. We derive sufficient conditions for LED policies to achieve throughput optimality and delay optimality in heavy-traffic, respectively. These conditions directly imply delay optimality for many previous local-memory based policies in heavy traffic. Moreover, the results enable us to design new delay optimal policies for heterogeneous systems with multiple dispatchers. Finally, the heavy-traffic delay optimality of the LED framework directly resolves a recent open problem on how to design optimal load balancing schemes using delayed information.

Download