Chiral fermions in solid state feature Fermi arc states, connecting the surface projections of the bulk chiral nodes. The surface Fermi arc is a signature of nontrivial bulk topology. Unconventional chiral fermions with an extensive Fermi arc traversing the whole Brillouin zone have been theoretically proposed in CoSi. Here, we use scanning tunneling microscopy / spectroscopy to investigate quasiparticle interference at various terminations of a CoSi single crystal. The observed surface states exhibit chiral fermion-originated characteristics. These reside on (001) and (011) but not (111) surfaces with pi-rotation symmetry, spiral with energy, and disperse in a wide energy range from ~-200 to ~+400 mV. Owing to the high-energy and high-space resolution, a spin-orbit coupling-induced splitting of up to ~80 mV is identified. Our observations are corroborated by density functional theory and provide strong evidence that CoSi hosts the unconventional chiral fermions and the extensive Fermi arc states.